Genome-wide identification and analysis of the GRF transcription factor family in Moso bamboo (Phyllostachys edulis)
-
摘要: 利用生物信息学方法,于毛竹(Phyllostachys edulis(Carr.)Lehaie)全基因组中鉴定获得18个GRF转录因子,并对其理化特性、保守结构域、系统发育关系、miR396靶位点以及基因表达模式进行了分析。结果表明,18个PeGRF蛋白长度为170~551 aa,分子量为18.5~58.8 kD;这些PeGRF蛋白均具有QLQ和WRC结构域,部分PeGRF含有FFD和TQL保守结构域。对毛竹、拟南芥(Arabidopsis thaliana(L.)Heynh)和水稻(Oryza sativa L.)的系统进化分析结果显示,毛竹18个GRF可分为3个亚类,且单子叶植物毛竹和水稻的GRF转录因子亲缘关系更近。miR396靶位点预测分析结果发现,在13个PeGRF基因序列的编码区存在毛竹miR396结合位点;PeGRF基因表达模式分析结果显示,PeGRF主要在毛竹的竹笋中表达。Abstract: A total of 18 GRF transcription factors were identified from the Moso bamboo (Phyllostachys edulis (Carr.) Lehaie) genome by bioinformatics, with their physiological and chemical characteristics, conserved motifs, phylogenetic relationship, miR396 binding sites, and expression patterns also determined. Results showed that the length of the 18 GRF transcription factor proteins ranged from 170 to 551 aa and the molecular weights ranged from 18.5 to 58.8 kD. All 18 PeGRF proteins possessed two highly conserved regions (QLQ and WRC domains), with some PeGRF proteins also possessing FFD and TQL conserved domains. Phylogenetic analysis of the GRF transcription factors from Moso bamboo, Arabidopsis, and rice showed that the Moso bamboo GRF transcription factors were divided into three groups; furthermore, the GRF transcription factors exhibited strong homology, especially between Moso bamboo and rice. In addition, probable Moso bamboo miR396 binding sites were found in 13 PeGRF genes. Expression analysis showed that all PeGRF genes were expressed predominantly in actively growing and developing tissues, such as young bamboo shoots. This research provides a reference for further functional analysis of GRF transcription factors in Moso bamboo.
-
Keywords:
- Moso bamboo (Phyllostachys edulis) /
- GRF /
- Gene family /
- Expression analysis
-
-
[1] 马超, 原佳乐, 张苏, 贾琦石, 冯雅岚. GRF转录因子对植物生长发育及胁迫响应调控的分子机制[J]. 核农学报, 2017, 31(11):2145-2153. Ma C, Yuan JL, Zhang S, Jia QS, Feng YL. The molecular mechanisms of growth-regulating factors (GRFs) in plant growth, development and stress response[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11):2145-2153.
[2] Van der Knaap E, Kim JH, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiol, 2000, 122(3):695-704.
[3] Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant J, 2003, 36(1):94-104.
[4] Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, et al. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.)[J]. Plant Sci, 2008, 175(6):809-817.
[5] Liu J, Hua W, Yang HL, Zhan GM, Li RJ, et al. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. J Exp Bot, 2012, 63(10):3727-3740.
[6] Wu ZJ, Wang WL, Zhuang J. Developmental processes and responses to hormonal stimuli in tea plant (Camellia sinensis) leaves are controlled by GRF and GIF gene families[J]. Funct Integr Genomics, 2017, 17(5):503-512.
[7] Wu L, Zhang D, Xue M, Qian J, He Y, Wang S. Overexpression of the maizeGRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.
[8] Kuijt SJH, Greco R, Agalou A, Shao JX,'tHoen CC, et al. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors[J]. Plant Physiol, 2014, 164(4):1952-1966.
[9] Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, et al. MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant J, 2013, 74(6):920-934.
[10] 刘玲童, 王台. miR396-GRF模块:水稻分子育种的新资源[J]. 植物学报, 2016, 51(2):148-151. Liu LT, Wang T. miR396-GRF Modules:A new prospective on rice molecular breeding[J]. Chinese Bulletin of Botany, 2016, 51(2):148-151.
[11] Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010, 137(1):103-112.
[12] 袁佳丽, 温国胜, 张明如, 张汝民, 蔡先锋, 等. 毛竹快速生长期的水势变化特征[J]. 浙江农林大学学报, 2015, 32(5):722-728. Yuan JL, Wen GS, Zhang MR, Zhang RM, Cai XF, et al. Water potential with Phyllostachys edulis in its fast-growth periods[J]. Journal of Zhejiang A & F University, 2015, 32(5):722-728.
[13] 曹福亮, 楼崇. 毛竹林出笋与幼竹生长发育规律的研究[J]. 竹子研究汇刊, 1991, 10(1):64-71. Cao FL, Lou C. A study on the laws of bamboo shooting and the growth and development of young bamboo of Phyllostachys pubescens[J]. Journal of Bamboo Research, 1991, 10(1):64-71.
[14] 丁兴萃. 毛竹笋体生长发育过程中内源激素的动态分析[J]. 竹子研究汇刊, 1997, 16(2):53-62. Ding XC. Dynamic analysis for endogenous phytohormones of bamboo shoots (Phyllostachys heterocycla var. pubescens) during different growth and differentiation stag[J]. Journal of Bamboo Research, 1997, 16(2):53-62.
[15] 董丽娜. 毛竹秆茎高生长的发育解剖研究[D]. 南京:南京林业大学, 2007. [16] 崔凯. 毛竹茎秆快速生长的机理研究[D]. 北京:中国林业科学研究院, 2011. [17] 方楷, 杨光耀, 杨清培, 黄俊宝, 施建敏, 于芬. 毛竹成竹过程中内源激素动态变化[J]. 江西农业大学学报, 2011, 33(6):1107-1111. Fang K, Yang GY, Yang QP, Huang JB, Shi JM, Yu F. Dynamic changes of endogenesis hormone in bamboo formation course (Phyllostachys edulis)[J]. Acta Agriculturae Universitatis Jiangxiensis, 2011, 33(6):1107-1111.
[18] Peng Z, Zhang C, Zhang Y, Hu T, Mu S, et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis)[J]. PLoS One, 2013a, 8(11):e78944.
[19] Choi D, Kim JH, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.)[J]. Plant Cell Physiol, 2004, 45(7):897-904.
[20] Wang F, Qiu N, Ding Q, Li J, Zhang Y, et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2014, 15(1):807.
[21] Peng Z, Lu Y, Li L, Zhao Q, Feng Q, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461.
[22] Zhao H, Peng Z, Fei B, Li L, Hu T, et al. BambooGDB:a bamboo genome database with functional annotation and an analysis platform[J]. Database (Oxford), 2014:bau006.
[23] Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-regulating factors (GRFs):A small transcription factor family with important functions in plant biology[J]. Mol Plant, 2015, 8(7):998-1010.
[24] Liu X, Guo LX, Jin LF, Liu YZ, Liu T, et al. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development[J]. Mol Biol Rep, 2016, 43(10):1059-1067.
[25] Kim JH, Tsukaya H. Regulation of plant growth and deve-lopment by the growth-regulating factor and GRF-interacting factor duo[J]. J Exp Bot, 2015, 66(20):6093-6107.
[26] Gao F, Wang K, Liu Y, Chen Y, Chen P, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture[J]. Nat Plants, 2015, 2:15196.
-
期刊类型引用(5)
1. 胡梦露,李宗艳,任书娴,杨建伟,伍倩,冯尧,叶松菩. 云南26种石斛种质资源的形态分类与亲缘关系. 江苏农业科学. 2025(01): 191-200 . 百度学术
2. 陶凯锋,朱永,王乐骋,张颖铎,李璐. 两种玉凤花属植物的花结构和合蕊柱超微特征及其分类学意义. 广西植物. 2024(01): 89-101 . 百度学术
3. 贺漫媚,代色平,陈秀萍,吴俭峰,刘国锋,阮琳,王伟. 17种石斛属植物表型性状多样性分析. 植物资源与环境学报. 2024(02): 71-79+90 . 百度学术
4. 涂国章,张显强. DNA条形码技术在石斛分类鉴定中的应用进展. 食品安全质量检测学报. 2023(02): 154-160 . 百度学术
5. 尚明越,王嘉乐,周莹,张满常,刘颖琳,段宝忠. 濒危紫皮石斛叶绿体基因组结构及系统发育分析. 中草药. 2023(19): 6424-6433 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 944
- HTML全文浏览量: 1
- PDF下载量: 1092
- 被引次数: 8