Analysis of the adaptive and geographical distribution of Yulania liliiflora based on DIVA-GIS
-
摘要: 基于39个地理分布信息和19个生物气候因子,利用BIOCLIM生态位模型对紫玉兰(Yulania liliiflora(Desr.) D.L.Fu)潜在适生区进行预测。结果显示,紫玉兰自然分布于云南、四川、贵州、湖北、甘肃、重庆、福建等地海拔300~1600 m的中低山区。当前气候条件下,贵州苗岭是其主要适生区;随着全球气候变暖(CO2浓度倍增情况下),紫玉兰的适生区有向高海拔地区收缩的趋势,而在分布区的东北界,其潜在分布范围将扩散至湖南中部和浙江东部地区。影响紫玉兰地理分布格局的重要因素是水热条件的综合效应。ROC曲线检验的AUC值(0.998)表明,采用BIOCLIM模型对紫玉兰潜在分布区的预测结果准确性较高。本研究在气候变暖的大环境下分析紫玉兰的适生性,可为紫玉兰种质资源的保护利用提供依据。Abstract: Based on 39 geographical distributions and 19 bio-climatic factors, the potential distribution regions of Yulania liliiflora (Desr.) D. L. Fu were predicted using the BIOCLIM model. Results showed that natural populations were distributed in Yunnan, Sichuan, Guizhou, Hubei, Gansu, Chongqing, and Fujian provinces, mainly within elevations ranging from 300 m to 1600 m. Under the present climatic conditions, the most suitable region was the Miaoling Mountains in Guizhou Province. Based on future global warming (with double CO2 concentrations), the potential distribution regions of Y. liliiflora should contract to higher altitudes but spread to central Hunan and eastern Zhejiang along the northeast boundary. Hydrothermal conditions (e.g., heat and moisture) significantly affected the geographical distribution pattern of Y. liliiflora. Results forecasted through the BIOCLIM model demonstrated high accuracy according to ROC curve analysis, which showed a high AUC value (0.998). In the context of global warming, our analysis on the adaptability of Y. liliiflora should provide a good basis for the protection and utilization of germplasm resources.
-
Keywords:
- Yulania liliiflora /
- BIOCLIM model /
- Geographical distribution /
- Climatic factor
-
-
[1] 阎传海. 植物地理学[M]. 北京:科学出版社, 2001. [2] Woodward FI, Williams BG. Climate and plant distribution at global and local scales[J]. Vegetatio, 1987, 69:189-197.
[3] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学, 2013, 43(11):915-927. Qiao HJ, Hu JH, Huang JH. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11):915-927.
[4] 朱耿平, 范靖宇, 王梦琳, 陈敏, 乔慧捷. ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例[J]. 生物安全学报, 2017, 26(3):184-190. Zhu GP, Fan JY, Wang ML, Chen M, Qiao HJ. The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation-Case study of Hlyphantria cunea[J]. Journal of Biosafety, 2017, 26(3):184-190.
[5] 邵慧, 田佳倩, 郭柯, 孙建新. 样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响——以12个中国特有落叶栎树种为例[J]. 植物生态学报, 2009, 33(5):870-877. Shao H, Tian JQ, Guo K, Sun JX. Effects of sample size and species traits on performance of BIOCLIM in predicting geographical distribution of tree species-A case study with 12 deciduous Quercus species indigenous to China[J]. Chinese Journal of Plant Ecology, 2009, 33(5):870-877.
[6] 谢春平. 基于DIVA-GIS生物地理分布图的绘制[J]. 湖北农业科学, 2011, 50(11):2345-2348. Xie CP. Simple biogeography distribution picture draw based on DIVA-GIS[J]. Hubei Agricultural Sciences, 2011, 50(11):2345-2348.
[7] 刘玉壶. 中国植物志:第30卷,第1分册[M]. 北京:科学出版社, 1996:140. [8] 刘玉壶. 中国木兰[M]. 北京:北京科学技术出版社, 2004. [9] 沈作奎, 杨小琴. 紫玉兰光合特性的日变化[J]. 湖北民族学院学报:自然科学版, 2007, 25(3):350-352. Shen ZK, Yang XQ. Diurnal change of photosynthesis Magnolia liliflora[J]. Journal of Hubei Institute for Nationalities:Natural Science Edition, 2007, 25(3):350-352.
[10] 王华, 欧阳志云, 任玉芬, 高付元. 北京市绿化树种紫玉兰的蒸腾特征及其影响因素[J]. 生态学报, 2011, 31(7):1867-1876. Wang H, Ouyang ZY, Ren YF, Gao FY. The characteristics of Magnolia liliflora transpiration and its impacting factors in Beijing City[J]. Acta Ecologica Sinica, 2011, 31(7):1867-1876.
[11] 徐棉芬. 二乔玉兰和紫玉兰杂交生物学基础及快繁技术[D]. 南京:南京林业大学, 2010. [12] 李成林. 紫玉兰容器扦插快繁技术研究[J]. 绿色科技, 2016(15):89-91, 93. Li CL. Study on rapid propagation technology of Magnolia liliflora Desr. container cuttings[J]. Journal of Green Science and Technology, 2016(15):89-91, 93.
[13] 邱宠华, 王奇志, 余岩. 外来入侵假臭草在中国分布区的预测[J]. 应用与环境生物学报, 2011, 17(6):774-781. Qiu CH, Wang QZ, Yu Y. Predicted potential distribution of Praxelis clematidea in China[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(6):774-781.
[14] Swets JA. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293.
[15] Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5):773-785.
[16] 张琴, 张东方, 吴明丽, 郭杰, 孙成忠, 谢彩香. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7):770-778. Zhang Q, Zhang DF, Wu ML, Guo J, Sun CZ, Xie CX. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chinese Journal of Plant Ecology, 2017, 41(7):770-778.
[17] 朱弘, 尤禄祥, 李涌福, 王华辰, 王贤荣. 浙闽樱桃地理分布模拟及气候限制因子分析[J]. 热带亚热带植物学报, 2017, 25(4):315-322. Zhu H, You LX, Li YF, Wang HC, Wang XR. Modeling the geographical distribution pattern and climatic limited factors of Cerasus schneideriana[J]. Journal of Tropical and Subtropical Botany, 2017, 25(4):315-322.
[18] 蔡菁, 陈放, 王胜华. 生物燃料植物麻疯树适生区预测[J]. 四川大学学报:自然科学版, 2012, 49(1):239-245. Cai J, Chen F, Wang SH. Distribution area prediction of biofuel crop Jatropha curcas L.[J]. Journal of Sichuan University:Natural Science Edition, 2012, 49(1):239-245.
[19] 刘玉壶, 夏念和, 杨惠秋. 木兰科(Magnoliaceae)的起源、进化和地理分布[J]. 热带亚热带植物学报, 1995, 3(4):1-12. Liu YH, Xia NH, Yang HQ. The origin, evolution and phytogeography of Magnoliaceae[J]. Journal of Tropical and Subtropical Botany, 1995, 3(4):1-12.
[20] 李蒙, 伊贤贵, 王华辰, 商韬, 顾宇, 王贤荣. 山樱花地理分布与水热环境因子的关系[J].南京林业大学学报:自然科学版, 2014, 38(S):74-80. Li M, Yi XG, Wang HC, Shang T, Gu Y, Wang XR. Studies on the relationship between Cerasus serrulata distribution region and the environmental factors[J]. Journal of Nanjing Forestry University:Natural Science Edition, 2014, 38(S):74-80.
[21] Yin XJ, Zhou GS. Climatic suitability of the potential geographic distribution of Fagus longipetiolata in China[J]. Environ Earth Sci, 2015, 73(3):1143-1149.
[22] 李垚, 张兴旺, 方炎明. 小叶栎分布格局对末次盛冰期以来气候变化的响应[J]. 植物生态学报, 2016, 40(11):1164-1178. Li Y, Zhang XW, Fang YM. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum[J]. Chinese Journal of Plant Ecology, 2016, 40(11):1164-1178.
[23] Osland MJ, Feher LC, Griffith KT, Cavanaugh KC, Enwright NM, Day RH, et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests[J]. Ecol Monogr, 2017, 87(2):341-359.
[24] Liu J, Wang B, Cane MA, Yim SY, Lee JY. Divergent global precipitation changes induced by natural versus anthropogenic forcing[J]. Nature, 2013, 493:656-659.
[25] 曹福祥, 徐庆军, 曹受金, 龙绛雪, 祁承经. 全球变暖对物种分布的影响研究进展[J]. 中南林业科技大学学报, 2008, 28(6):86-89. Cao FX, Xu QJ, Cao SJ, Long JX, Qi CJ. Advances of global warming impact on species distribution[J]. Journal of Central South University of Forestry & Technology, 2008, 28(6):86-89.
[26] 袁峰. 冬虫夏草居群谱系地理与适生区分布研究[D]. 昆明:云南大学, 2015. [27] 张兴旺, 李垚, 方炎明. 麻栎在中国的地理分布及潜在分布区预测[J]. 西北植物学报, 2014, 34(8):1685-1692. Zhang XW, Li Y, Fang YM. Geographical distribution and prediction of potential ranges of Quercus acutissima in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8):1685-1692.
[28] 沈涛, 张霁, 申仕康, 赵艳丽, 王元忠. 西南地区红花龙胆分布格局模拟与气候变化影响评价[J]. 应用生态学报, 2017, 28(8):2499-2508. Shen T, Zhang J, Shen SK, Zhao YL, Wang YZ. Distribution simulation of Gentiana rhodantha in Southwest China and assessment of climate change impact[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2499-2508.
[29] Seidel DJ, Fu Q, Randel WJ, Reichler TJ. Widening of the tropical belt in a changing climate[J]. Nat Geosci, 2008,1(1):21-24.
[30] 吴福婷, 符漴斌. 全球变暖背景下不同空间尺度降水谱的变化[J]. 科学通报, 2013, 58(8):664-673. Wu FT, Fu CB. Change of precipitation intensity spectra at different spatial scales under warming conditions[J]. Chinese Science Bulletin, 2013, 58(8):664-673.
[31] 李国庆, 刘长成, 刘玉国, 杨军, 张新时, 郭柯. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16):4827-4835. Li GQ, Liu CC, Liu YG, Yang J, Zhang XS, Guo K. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16):4827-4835.
-
期刊类型引用(13)
1. 张迪,薛明珂,刘明,尚晓峰,张旭彤,刘金娜. 基于生态位模型的南、北五味子潜在适生区预测及其影响因子研究. 湖北农业科学. 2024(01): 116-121 . 百度学术
2. 侯国宾. 兰州市紫玉兰特征特性及栽培技术要点. 南方农业. 2024(17): 177-180 . 百度学术
3. 宦智群,耿兴敏,徐小蓉,刘维,祝遵凌,唐明. 基于MaxEnt模型分析不同气候变化情景下的黄心夜合(Michelia martinii)潜在地理分布. 生态与农村环境学报. 2023(10): 1277-1287 . 百度学术
4. 孙芝倩,庞兴宸,施诗,陈梓宜,陈景锋,吴永彬. 基于DIVA-GIS和MaxEnt的我国枇杷适生区预测和生态适宜性研究. 生态科学. 2023(06): 177-186 . 百度学术
5. 圣倩倩,王晨,王立飞,刘彦辰,耿兴敏,祝遵凌. 基于DIVA-GIS的牡丹在中国适生区的预测. 经济林研究. 2022(01): 205-213+248 . 百度学术
6. 董京京,陈洁,杨宏,李蒙,王贤荣,伊贤贵. 华中樱桃适生区模拟和生态特征分析. 南京林业大学学报(自然科学版). 2022(03): 213-221 . 百度学术
7. 兰雪涵,王金玲,付聪,李黎明,袁梦琦,檀婷婷,杜凤国. 基于优化MaxEnt模型的天女木兰在中国适生区预测. 西北林学院学报. 2022(04): 100-106 . 百度学术
8. 车欣,于雪冬,郑翔宇,齐慧敏,刘一儒,李梦,许广波. 我国道地药材适生区研究应用现状. 中华中医药学刊. 2022(07): 121-124 . 百度学术
9. 陈建福. 超声波辅助提取紫玉兰叶多酚工艺及其抗氧化活性研究. 湖北民族大学学报(自然科学版). 2022(03): 267-273+281 . 百度学术
10. 林艳,黄志华,梁益斌,周红英,范福军,崔大方. 薯莨地理分布及适生区预测. 林业与环境科学. 2021(04): 55-61 . 百度学术
11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
12. 周奕景,张浩,孙佳佳,林伟,简保磊,田雯,吕飞,钱震. 苹果壳色单隔孢溃疡病菌的适生区预测. 植物检疫. 2020(03): 64-68 . 百度学术
13. 郭晓旭,王璐,许晓岗,童丽丽. 基于MaxEnt模型的芬芳安息香潜在适生区预测. 生态科学. 2020(04): 119-124 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 831
- HTML全文浏览量: 1
- PDF下载量: 850
- 被引次数: 23