Sequence diversity of the FT gene in diploid Rosa
-
摘要: 以3个类群73个二倍体蔷薇属(Rosa)植物为材料,克隆获得其FLOWERING LOCUS T(FT)同源基因,并对该基因的编码区序列进行多态性分析以及多维尺度(MDS)聚类分析。结果显示,73个二倍体蔷薇植物的FT基因共检测到215个核苷酸多态性位点,其中包括214个SNP和1个缺失突变,平均185个碱基发生1次突变;氨基酸多态性分析结果显示共有35个氨基酸发生变异,平均379.6个氨基酸残基发生1次突变;突变位点统计分析结果发现39、258、426 bp位点是高频突变位点,其碱基由A或C突变为T。MDS聚类分析结果表明,3个类群FT基因编码区序列的碱基组内差异依次排序为:野生种 > 月季组 > 中国古老月季,氨基酸组内差异依次排序为:中国古老月季 > 月季组 > 野生种,推测中国古老月季在长期栽培驯化过程中,其FT基因可能经历了较强的人工选择压力,月季组的种和变种可能是古老月季的重要亲本来源。Abstract: To understand the polymorphism of the FLOWERING LOCUS T(FT) homologous gene in Rosa and its relationship between different rose germplasm types, we cloned the FT homologous genes from 73 diploid Rosa germplasms. The sequence polymorphisms of the FT genes were analyzed using multidimensional scaling(MDS) cluster visualization. In total, 215 nucleotide polymorphism loci were detected in 73 diploid materials, including 214 SNPs and one deletion locus, with an average of 185 bases and one mutation. For amino acid polymorphism, a total of 35 amino acid mutations were detected, with an average of 379.6 amino acids and one mutation. Statistical analysis of the mutation sites showed that the 39, 258, and 426 bp sites were high-frequency mutation sites, and the bases were A or C mutated to T. The MDS cluster visualization analysis results indicated that the differences in the base mutations of the FT gene coding region of the three taxa were wild species > Sect. Chinenses DC. > Chinese old garden roses, and the amino acid variance within groups was Chinese old garden roses > Sect. Chinenses DC. > wild species. Thus, we speculated that during the long-term cultivation and domestication of the Chinese old garden rose, the FT genes experienced strong artificial selection pressure. We further identified close genetic similarity among the Sect. Chinenses DC., wild species, and Chinese old garden roses. However, the genetic relationship between wild species and Sect. Chinenses DC. was further apart. This indicates that Sect. Chinenses DC. may be an important parent of the Chinese old garden roses.
-
Keywords:
- Rosa /
- FT gene /
- Polymorphism /
- Chinese old garden roses
-
-
[1] Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development[J]. Plant Cell Environ, 2012, 35(10):1742-1755.
[2] Wellmer F, Riechmann JL. Gene networks controlling the initiation of flower development[J]. Trends Genet, 2010, 26(12):519-527.
[3] 刘丽敏, 陈福禄, 张晓玫, 武小霞, 陈庆山, 等. 成花素基因FT及其调控机制研究进展[J]. 分子植物育种, 2016, 14(7):1705-1717. Liu LM, Chen FL, Zhang XM, Wu XX, Chen QS, et al. Advances on florigen gene FT and its regulatory mechanism[J]. Molecular Plant Breeding, 2016, 14(7):1705-1717.
[4] Turck F, Fornara F, Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage[J]. Annu Rev Plant Biol, 2008, 59(1):573-594.
[5] Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286(5446):1960-1962.
[6] Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827):1030-1033.
[7] Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, et al. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering[J]. Plant Cell Physiol, 2008, 49(11):1645-1658.
[8] Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005, 309(5737):1052-1056.
[9] Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, et al. 14-3-3 proteins act as intracellular receptors for riceHd3a florigen[J]. Nature, 2011, 476(7360):332-335.
[10] Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776):1040-1043.
[11] Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato[J]. Planta, 2004, 218(3):427-434.
[12] 吕经娟, 李淑斌, 周宁宁, 蹇洪英, 王其刚, 等.‘光叶蔷薇’器官间接再生体系的建立及GUS基因转化的初步研究[J]. 植物科学学报, 2014, 32(2):139-147. Lü JJ, Li SB, Zhou NN, Jian HY, Wang QG, et al. Callus induction and plant regeneration of Rosa wichuraiana ‘Basye's thornless’[J]. Plant Science Journal, 2014, 32(2):139-147.
[13] Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, et al. The Rosa genome provides new insights into the domestication of modern roses[J]. Nat Genet, 2018, 50(6):772-777.
[14] Hurst CC. Notes on the origin and evolution of our garden roses[J]. J Roy Hort Soc, 1941, 66:73-82.
[15] Ogisu M. Some thoughts on the history of China roses[J]. New Plantsman, 1996, 3:152-157.
[16] Li SB, Zhou NN, Zhuo Q, Yan HJ, Jian HY, et al. Inheri-tance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Hortic Plant J, 2015, 1(2):108-112.
[17] 李淑斌, 周宁宁, 周青, 晏慧君, 蹇洪英, 等.‘月月粉’连续开花习性遗传规律分析[J]. 园艺学报, 2015, 42(11):2223-2228. Li SB, Zhou NN, Zhou Q, Yan HJ, Jian HY, et al. Inheritance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Acta Horticulturae Sinica, 2015, 42(11):2223-2228.
[18] Remay A, Lalanne D, Thouroude T, Couviour FL, Oyant LH, et al. A survey of flowering genes reveals the role of gibberellins in floral control in rose[J]. Theor Appl Genet, 2009, 119(5):767-781.
[19] Kawamura K, Oyant LH, Crespel L, Thouroude T, Lalanne D, et al. Quantitative trait loci for flowering time and inflorescence architecture in rose[J]. Theor Appl Genet, 2011, 122(4):661-675.
[20] Randoux M, Jeauffre J, Thouroude T, Vasseur F, Hamama L, et al. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a roseTFL1 homologue[J]. J Exp Bot, 2012, 63(18):6543-6554.
[21] Randoux M, Daviere J, Jeauffre J, Thouroude T, Pierre S, et al. RoKSN, a floral repressor, forms protein comp-lexes with RoFD and RoFT to regulate vegetative and reproductive development in rose[J]. New Phytol, 2014, 202(1):161-173.
[22] Otagaki S, Ogawa Y, Oyant LH, Foucher F, Kawamura K, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses[J]. Plant Biol, 2015, 17(4):808-815.
[23] Ohta T, Kimura M. Behavior of neutral mutants influenced by associated over dominant loci in finite populations[J]. Genetics, 1971, 141:413-429.
[24] 杨海娇, 张德强. 植物基因组拷贝数变异研究现状[J]. 分子植物育种, 2015, 13(8):1895-1910. Yang HJ, Zhang DQ. Copy number variations in plant genomes[J]. Molecular Plant Breeding, 2015, 13(8):1895-1910.
[25] 田孟良, 黄玉碧, 谭功燮, 刘永建, 荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(5):729-736. Tian ML, Huang YB, Tan GX, Liu YJ, Rong TZ. Sequence polymorphism of waxy genes in landraces of waxy maize from Southwest China[J]. Acta Agronomica Sinica, 2008, 34(5):729-736.
[26] 张乐, 李英慧, 刘章雄, 邱丽娟. 栽培大豆(G. max)和野生大豆(G. soja)的Glyma13g21630基因多样性[J]. 作物学报, 2011, 37(10):1724-1734. Zhang L, Li YH, Liu ZX, Qiu LJ. GeneGlyma13g21630 diversity in cultivated(G. max) and wild(G. soja) soybeans[J]. Acta Agronomica Sinica, 2011, 37(10):1724-1734.
[27] Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD, et al. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway[J]. Genetics, 2002, 160(4):1641-1650.
[28] 丁群. 成花相关基因在柑橘属种间的遗传多样性[D]. 武汉:华中农业大学, 2013. [29] 张君慧. 在驯化和育种过程中籼稻功能基因单核苷酸多态性的变化[D]. 南昌:南昌大学, 2013. [30] 张守伟. 不同生育期组大豆品种FT家族基因的自然变异分析[D]. 北京:中国农业科学院, 2016. [31] Jian HY, Zhang T, Wang QG, Li SB, Zhang H, et al. Karyological diversity of wild Rosa in Yunnan, southwes-tern China[J]. Genet Resour Crop Evol,2013, 60(1):115-127.
[32] 蹇洪英, 张颢, 王其刚, 唐开学, 李树发, 等. 中国古老月季品种的核型研究[J]. 园艺学报, 2010, 37(1):83-88. Jian HY, Zhang H, Wang QG, Tang KX, Li SF, et al. Karylogical study of Chinese old garden roses[J]. Acta Horticulturae Sinica, 2010, 37(1):83-88.
[33] 张婷, 蹇洪英, 王其刚, 张颢, 唐开学, 等. 11个中国古老月季品种的核型分析[J]. 西南农业学报, 2010, 23(5):1656-1659. Zhang T, Jian HY, Wang QG, Zhang H, Tang KX, et al. Study on karyotype of eleven Chinese old garden roses[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5):1656-1659.
[34] Bronstein AM, Bronstein MM, Kimmel R. Generalized multidimensional scaling:a framework for isometry-invariant partial surface matching[J]. Proc Natl Acad Sci USA, 2006, 103(5):1168-1172.
[35] Scariot V, Akkak A, Botta R. Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis[J]. J Amer Soc Hortic Sci, 2006, 131(1):66-73.
[36] 许凤, 李凌, 邱显钦, 唐开学, 蹇洪英, 等. 云南39个野生蔷薇种间遗传多样性的SSR分析[J]. 西南大学学报:自然科学版, 2009, 31(6):83-87. Xu F, Li L, Qiu XQ, Tang KX, Jian HY, et al. Analysis of genetic diversity of some Rosa wild species in Yunnan based on SSR markers[J]. Journal of Southwest Univer-sity:Natural Science Edition, 2009, 31(6):83-87.
[37] 唐开学, 邱显钦, 张颢, 李树发, 王其刚, 等. 云南蔷薇属部分种质资源的SSR遗传多样性研究[J]. 园艺学报, 2008, 35(8):1227-1232. Tang KX, Qiu XQ, Zhang H, Li SF, Wang QG, et al. Study on genetic diversity of some Rosa germplasm in Yunnan based on SSR markers[J]. Acta Horticulturae Sinica, 2008, 35(8):1227-1232.
[38] Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes[J]. Proc Natl Acad Sci USA, 2004, 101(34):12588-12591.
[39] 赖瑞联, 林玉玲, 钟春水, 赖钟雄.龙眼生长素受体基因TIR1密码子偏好性分析[J]. 园艺学报, 2016, 43(4):771-780. Lai RL, Lin YL, Zhong CS, Lai ZX. Analysis of codon bias of auxin receptor gene TIR1 in Dimocarpus longan[J]. Acta Horticulturae Sinica, 2016, 43(4):771-780.
[40] 王书芳. 二倍体月季种质资源基因组第三连锁群遗传变异及群体结构研究[D]. 昆明:云南大学, 2015. [41] Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry[J]. Plant J, 2012, 69(1):116-125.
-
期刊类型引用(17)
1. 徐磊,胥晓,刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响. 植物研究. 2023(04): 572-581 . 百度学术
2. 张爱慧,冷欣兰,袁颖辉,任慧羚,陈雪琼,朱士农. 5-ALA对NaCl胁迫下丝瓜幼苗生长及生理特性的影响. 江苏农业科学. 2023(13): 137-141 . 百度学术
3. 朱普生,刘慧英,曹泽,丛蕴郸. 番茄GAPDH基因家族的鉴定及其在GSNO调控番茄盐胁迫中的响应. 分子植物育种. 2023(23): 7682-7688 . 百度学术
4. 张雪蒙,亢超,滕元旭,陈静怡,崔辉梅. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报. 2022(02): 255-262 . 百度学术
5. 吴莺,张淑英,陈明媛,王梦柯. SNP对盐胁迫下棉花幼苗光合抑制及氧化损伤的缓解效应. 植物生理学报. 2022(04): 757-766 . 百度学术
6. 左月桃,董玲,任晓松,刘赵月,左师宇,李晶. 外源褪黑素对盐碱胁迫下小黑麦种子萌发幼苗生长、抗氧化能力的影响. 麦类作物学报. 2022(01): 90-99 . 百度学术
7. 赵野,刘威,王贺,吴华鑫,肖雅楠,闫永庆. 外源CaCl_2对盐胁迫下西伯利亚白刺活性氧代谢的影响. 植物生理学报. 2021(05): 1105-1112 . 百度学术
8. 程园,李灿婴,侯佳宝,李雪,王晓涵,葛永红. 采后硝普钠处理对南果梨果实贮藏品质和细胞壁降解酶的影响. 食品科学. 2020(01): 252-257 . 百度学术
9. 耿贵,李任任,吕春华,於丽华,王宇光. 外源调节物质对盐胁迫下植物生长调控研究进展. 中国农学通报. 2020(24): 85-90 . 百度学术
10. 刘赵月,李蕊彤,李晶,顾万荣,左师宇,任晓松,左月桃,魏湜. 盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响. 江苏农业学报. 2020(04): 842-850 . 百度学术
11. 赵宝泉,邢锦城,王静,朱小梅,刘冲,洪立洲. 水杨酸对盐胁迫下杭白菊幼苗生长和生理特性的影响. 吉林农业大学学报. 2020(04): 370-379 . 百度学术
12. 普凌,赵鑫,王艇越,侯浩南,张毅. 等渗盐胁迫对番茄幼苗生长和生理特性的影响. 陕西农业科学. 2019(05): 35-38 . 百度学术
13. 蒋景龙,沈季雪,李丽. 外源H_2O_2对盐胁迫下黄瓜幼苗氧化胁迫及抗氧化系统的影响. 西北农业学报. 2019(06): 998-1007 . 百度学术
14. 孙德智,杨恒山,张庆国,范富,苏雅乐其其格,彭靖,韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用. 浙江农业学报. 2019(08): 1286-1294 . 百度学术
15. 李翀,王杰,贾赵辉,程雪飞,彭孝楠,陈颖,张金池. 南林‘895’杂交杨组培苗对NaCl胁迫的生理响应. 安徽农业大学学报. 2019(06): 961-967 . 百度学术
16. 李海萍. 盐胁迫及外源物质对植物抗盐性影响的研究进展. 青海农技推广. 2018(04): 48-50 . 百度学术
17. 董亚茹,赵东晓,杜建勋,孙景诗,陈传杰,王照红. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响. 蚕业科学. 2018(06): 821-827 . 百度学术
其他类型引用(16)
计量
- 文章访问数: 581
- HTML全文浏览量: 1
- PDF下载量: 793
- 被引次数: 33