Responses of different genotype Fagopyrum tataricum seedlings to low phosphorus stress
-
摘要: 采用沙培法,以4个不同耐低磷苦荞(Fagopyrum tataricum(L.) Gaertn)品种为材料,设正常磷处理(P1,2 mmol/L对照)、低磷胁迫(P2,1 mmol/L)和极低磷胁迫(P3,0.2 mmol/L)3个处理,研究低磷胁迫对苦荞苗期农艺性状、生理生化指标以及植株磷利用的影响。结果显示:(1)低磷胁迫下,苦荞苗期株高、茎粗、叶面积、地上部干重、根系干重、根系平均直径、根系表面积、根系体积等指标均有所下降;主根伸长、根冠比有所升高,但不同品种的升降幅度有所不同。(2)低磷胁迫使苦荞叶绿素含量、可溶性蛋白含量和根系活力均有所下降,根系的SOD活性、POD活性、酸性磷酸酶活性、可溶性糖含量、游离脯氨酸含量显著增加,且表现为耐低磷苦荞品种的增幅大于不耐低磷苦荞。(3)低磷胁迫使苦荞植株全磷含量和单株磷积累量下降,却使磷利用效率升高。研究结果表明耐低磷品种通过主根伸长下扎以及分泌较多的酸性磷酸酶,合理吸收与利用土壤磷素,通过保持叶片较高的叶绿素含量维持较强的光合能力,通过保持较高的抗氧化酶活性降低膜脂过氧化伤害,最大程度的适应低磷环境。Abstract: To explore the responses of Fagopyrum tataricum to low phosphorus(P) stress, a potting experiment was conducted to examine the agronomic traits and physiological characters of four genotypes of F. tataricum at the seedling stage under different P treatment(P1, 2 mmol/L, CK; P2, 1 mmol/L; P3, 0.2 mmol/L). Results showed that with increasing P stress:(1) Plant height, stem diameter, leaf area, dry weight of shoots and roots, average root diameter, root surface area, and root volume decreased for all genotypes, whereas the length of the main root and most root-shoot ratios increased. To some extent, the amplifications of different genotypes were significantly different.(2) Chlorophyll content, soluble protein content, and root activity decreased, whereas root superoxide dismutase(SOD) activity, peroxidase(POD) activity, acid phosphatase activity, soluble sugar content, and free proline content all increased, and the increase was greater in low-P tolerant cultivars than that in low-P sensitive F. tataricum.(3) Total P content and P accumulation per plant decreased, whereas P use efficiency increased. Therefore, to adapt to low-P environments, the low-P tolerant cultivars absorbed and utilized soil P by root growth and higher acid phosphatase, maintained stronger photosynthetic capacity by higher chlorophyll content, and reduced membrane lipid peroxidation damage by higher antioxidant enzyme(e.g., SOD and POD) activity.
-
Keywords:
- Fagopyrum tataricum /
- Physiology and growth /
- Low phosphorus stress /
- Seedlings
-
-
[1] 宋爱梅. 氮高效水稻品种苗期耐低磷种质的筛选与鉴定[D]. 南京:南京农业大学, 2010. [2] 张永清, 苗果园. 生土施肥对黍子根系生长及生理生态效应的影响[J]. 水土保持学报, 2006, 20(3):158-161. Zhang YQ, Miao GY. Effects of fertilizing in immature soil to broomcorn millet root growing and its physiological eco-logy[J]. Journal of Soil and Water Conservation, 2006, 20(3):158-161.
[3] 李慧明, 高志强, 张永清, 苗果园. 不同基因型春小麦根系对低磷胁迫的生物学响应[J]. 山西农业大学学报:自然科学版, 2006(2):138-140. Li HM, Gao ZQ, Zhang YQ, Miao GY. The biological response of root system of different genotypes spring wheat to low phosphorus stress[J]. Journal of Shanxi Agricultu-ral University:Natural Science, 2006, 26(2):138-140.
[4] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphereas affected by root-induced chemical changes:a review[J]. Plant Soil, 2001, 237:173-195.
[5] Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157:423-447.
[6] Gross M. Fears over phosphorus supplies[J]. Curr Biol, 2010, 20:386-387.
[7] 周建朝, 林晓坤, 王孝纯, 邓艳红, 王艳. 低磷胁迫对不同基因型甜菜抗性生理特征的效应[J]. 植物营养与肥料学报, 2010, 16(6):1379-1386. Zhou JC, Lin XK, Wang XC, Deng YH, Wang Y. Effects of P ideficiency on characteristics of resistant physiology in different sugar beet(Beta vulgaris L.) genotypes[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6):1379-1386.
[8] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究[J]. 河南农业科学, 2014, 43(5):24-29. Yang WB, Chen Y, Zhang Y, Lin DL, Li X, Xing GZ, Xu J, Zheng WM. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture[J]. Journal of Henan Agricultural Sciences, 2014, 43(5):24-29.
[9] 齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J]. 生态环境学报, 2006,15(6):1264-1268. Qi J, Song FB, Liu SQ. Some physiological response of roots and leaves of Zea mays seedling to drought-stress[J]. Ecology and Environment, 2006, 15(6):1264-1268.
[10] Katsuya Y, Takashi K. Root morphological plasticity for heterogeneous phosphorus supply in Zea mays L.[J]. Plant Prod Sci, 2005, 8:427-4323.
[11] 张传龙. 高产玉米苗期管理措施[J]. 河南农业, 2016(22):23-23. [12] 张雄, 王立祥, 柴岩, 廖允成. 小杂粮生产可持续发展探讨[J]. 中国农业科学, 2003, 36(12):1595-1598. Zhang X, Wang LX, Chai Y, Liao YC. The discussion of sustainable development about the minor crops production[J]. Scientia Agricultura Sinica, 2003, 36(12):1595-1598.
[13] Calderónmontaño JM, Burgosmorón E, Pérezguerrero C, Lópezlázaro M. A review on the dietary flavonoid kaempferol[J]. Mini Rev Med Chem, 2011, 11(4):298-344.
[14] Qin PY, Wang QA, Shan F, Hou Z, Ren G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars[J]. Int J Food Sci Technol, 2010, 45(5):951-958.
[15] 贾瑞玲, 马宁, 魏立平, 刘彦明, 南铭. 50份苦荞种质资源农艺性状的遗传多样性分析[J]. 干旱地区农业研究, 2015, 33(5):11-16. Jia RL, Ma N, Wei LP, Liu YM, Nan M. Genetic diversity analysis on the agronomic characteristics of 50 tartary buckwheat germplasms[J]. Agricultural Research in the Arid Areas, 2015, 33(5):11-16.
[16] 石艳华, 张永清. 烯效唑浸种对不同水分条件下苦荞生长的影响[J]. 湖北农业科学, 2015, 54(6):1289-1295. Shi YH, Zhang YQ. Effects of soaking seed with unico-nazole on the growth of tartary buckwheat under different water conditions[J]. Hubei Agricultural Sciences, 2015, 54(6):1289-1295.
[17] Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat(Fagopyrum Esculentum M.) sprout[J]. Food Chem, 2012, 135(3):1065-1070.
[18] 赵化田. 小麦耐低磷基因型筛选及磷效率相关性状QTL定位[D]. 四川:四川农业大学, 2011. [19] 刘渊, 李喜焕, 王瑞霞, 张彩英. 大豆耐低磷指标筛选与耐低磷品种鉴定[J]. 中国农业科技导报, 2015, 17(4):30-41. Liu Y, Li XH, Wang RX, Zhang CY. Screen indexes for soybean tolerance to phosphorus deficiency and identification of low phosphorus tolerant soybean cultivars[J]. Journal of Agricultural Science and Technology, 2015, 17(4):30-41.
[20] 张志良. 植物生理学实验指导[M]. 北京:高等教育出版社, 2009. [21] Gaume A, Machler F, León CD, Narro L, Frossard E. Low-P tolerance by maize(Zea mays L.) genotypes:Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant Soil, 2001, 228:253-264.
[22] 闫江艳, 张永清, 冯晓敏, 李鹏, 王海茹. 干旱胁迫及复水对不同黍稷品种根系生理特性的影响[J]. 西北植物学报, 2012, 32(2):348-354. Yan JY, Zhang YQ, Feng XM, Li P, Wang HR. Effect of drought stress and rewatering on physiological charac-teristics of roots in different proso millet varieties[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(2):348-354.
[23] 史冬平, 杨笑, 张永清. 镧浸种对盐胁迫下小麦幼苗生长及其生理特征的影响[J]. 西北植物学报, 2008, 28(4):730-736. Shi DP, Yang X, Zhang YQ. Effects of lanthanum on the growth and physiological characteristics of wheat seedling under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4):730-736.
[24] 云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展[J]. 西北植物学报, 2006, 26(3):641-648. Yun JY, Yang JD, Zhao HL. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis[J]. Acta Botanica Boreal-Occident Sinica, 2006, 26(3):641-648.
[25] 栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析[J]. 中国农业科学, 2017, 50(20):3898-3907. Li ZY, Zhang QX, Tong ZY, Li Y, Xu HY, Wang XF, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas[J]. Scientia Agricultura Sinica, 2017, 50(20):3898-3907.
[26] 余利平, 张春雷, 马霓, 李俊, 李光明. 甘蓝型油菜对干旱和低磷双重胁迫的生理反应Ⅱ:叶片叶绿素含量及叶绿素荧光参数[J]. 干旱地区农业研究, 2013, 31(2):169-175. Yu LP, Zhang CL, Ma N, Li J, Li GM. Physiological responses of rapeseed(Brassica napus) to drought and phosphorus deficiencyⅡ:Chlorophyll content and chlorophyll fluorescence parameters[J]. Agricultural Research in the Arid Areas, 2013, 31(2):169-175.
[27] Cao P, Ren YZ, Zhang KP, Teng W, Zhao XQ, Dong ZY, et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat[J]. Mol Breeding, 2014, 33(4):975-985.
[28] 林磊, 周志春. 水分和磷素对木荷不同种源苗木生长和磷效率的影响[J]. 应用生态学报, 2009, 20(11):2617-2623. Lin L, Zhou ZC. Effects of soil moisture condition and phosphorus supply on the seedlings growth and phosphorus efficiency of Schima superba provenances[J]. Chinese Journal of Applied Ecology, 2009, 20(11):2617-2623.
[29] 陈磊, 王盛锋, 刘荣乐, 汪洪. 不同磷供应水平下小麦根系形态及根际过程的变化特征[J]. 植物营养与肥料学报, 2012, 18(2):324-331. Chen L, Wang SF, Liu RL, Wang H. Changes of root morphology and rhizosphere processes of wheat under diffe-rent phosphate supply[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2):324-331.
[30] 陈海英, 余海英, 陈光登, 李廷轩. 低磷胁迫下磷高效基因型大麦的根系形态特征[J].应用生态学报, 2015, 26(10):3020-3026. Chen HY, Yu HY, Chen GD, Li TX. Boot morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress[J]. Chinese Journal of Applied Ecology, 2015, 26(10):3020-3026.
[31] Tyburski J, Dunajska K, Tretyn A. A role for redox factors in shaping root architecture under phosphorus deficiency[J]. Plant Signal Behav, 2010, 5(1):64-66.
[32] Bayuelojiménez JS, Ochoa I, Pérezdecelis VA, Magdalenoarmas MDL, Cárdenasnavarro R. Phosphorus-efficiency in maize germplasm at seedling stage from the Plateau[J]. Rev Fitotec Mex, 2012, 35(3):199-208.
[33] 陈波浪, 盛建东, 蒋平安, 李卫华, 王靓. 不同基因型棉花磷效率特征及其根系形态的差异[J]. 棉花学报, 2014, 26(6):506-512. Chen BL, Sheng JD, Jiang PA, Li WH, Wang L. Diffe-rences of phosphorus efficiency characteristics and root morphology between two cotton genotypes[J]. Cotton Science, 2014, 26(6):506-512.
[34] 杨瑞吉, 张小红, 王鹤龄, 高玉红, 盖玥. 不同基因型春小麦对磷胁迫适应性研究[J].西北植物学报, 2015, 25(11):2314-2318. Yang RJ, Zhang XH, Wang HL, Gao YH, Gai Y. Adaptabilities of different genotypes of spring wheat to phosphorous deficiency[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 25(11):2314-2318.
-
期刊类型引用(17)
1. 徐磊,胥晓,刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响. 植物研究. 2023(04): 572-581 . 百度学术
2. 张爱慧,冷欣兰,袁颖辉,任慧羚,陈雪琼,朱士农. 5-ALA对NaCl胁迫下丝瓜幼苗生长及生理特性的影响. 江苏农业科学. 2023(13): 137-141 . 百度学术
3. 朱普生,刘慧英,曹泽,丛蕴郸. 番茄GAPDH基因家族的鉴定及其在GSNO调控番茄盐胁迫中的响应. 分子植物育种. 2023(23): 7682-7688 . 百度学术
4. 张雪蒙,亢超,滕元旭,陈静怡,崔辉梅. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报. 2022(02): 255-262 . 百度学术
5. 吴莺,张淑英,陈明媛,王梦柯. SNP对盐胁迫下棉花幼苗光合抑制及氧化损伤的缓解效应. 植物生理学报. 2022(04): 757-766 . 百度学术
6. 左月桃,董玲,任晓松,刘赵月,左师宇,李晶. 外源褪黑素对盐碱胁迫下小黑麦种子萌发幼苗生长、抗氧化能力的影响. 麦类作物学报. 2022(01): 90-99 . 百度学术
7. 赵野,刘威,王贺,吴华鑫,肖雅楠,闫永庆. 外源CaCl_2对盐胁迫下西伯利亚白刺活性氧代谢的影响. 植物生理学报. 2021(05): 1105-1112 . 百度学术
8. 程园,李灿婴,侯佳宝,李雪,王晓涵,葛永红. 采后硝普钠处理对南果梨果实贮藏品质和细胞壁降解酶的影响. 食品科学. 2020(01): 252-257 . 百度学术
9. 耿贵,李任任,吕春华,於丽华,王宇光. 外源调节物质对盐胁迫下植物生长调控研究进展. 中国农学通报. 2020(24): 85-90 . 百度学术
10. 刘赵月,李蕊彤,李晶,顾万荣,左师宇,任晓松,左月桃,魏湜. 盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响. 江苏农业学报. 2020(04): 842-850 . 百度学术
11. 赵宝泉,邢锦城,王静,朱小梅,刘冲,洪立洲. 水杨酸对盐胁迫下杭白菊幼苗生长和生理特性的影响. 吉林农业大学学报. 2020(04): 370-379 . 百度学术
12. 普凌,赵鑫,王艇越,侯浩南,张毅. 等渗盐胁迫对番茄幼苗生长和生理特性的影响. 陕西农业科学. 2019(05): 35-38 . 百度学术
13. 蒋景龙,沈季雪,李丽. 外源H_2O_2对盐胁迫下黄瓜幼苗氧化胁迫及抗氧化系统的影响. 西北农业学报. 2019(06): 998-1007 . 百度学术
14. 孙德智,杨恒山,张庆国,范富,苏雅乐其其格,彭靖,韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用. 浙江农业学报. 2019(08): 1286-1294 . 百度学术
15. 李翀,王杰,贾赵辉,程雪飞,彭孝楠,陈颖,张金池. 南林‘895’杂交杨组培苗对NaCl胁迫的生理响应. 安徽农业大学学报. 2019(06): 961-967 . 百度学术
16. 李海萍. 盐胁迫及外源物质对植物抗盐性影响的研究进展. 青海农技推广. 2018(04): 48-50 . 百度学术
17. 董亚茹,赵东晓,杜建勋,孙景诗,陈传杰,王照红. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响. 蚕业科学. 2018(06): 821-827 . 百度学术
其他类型引用(16)
计量
- 文章访问数: 679
- HTML全文浏览量: 0
- PDF下载量: 538
- 被引次数: 33