高级检索+

不同基因型水稻苗期抗氧化系统对低温胁迫的响应

郭慧, 李树杏, 孙平勇, 邓华凤

郭慧, 李树杏, 孙平勇, 邓华凤. 不同基因型水稻苗期抗氧化系统对低温胁迫的响应[J]. 植物科学学报, 2019, 37(1): 63-69. DOI: 10.11913/PSJ.2095-0837.2019.10063
引用本文: 郭慧, 李树杏, 孙平勇, 邓华凤. 不同基因型水稻苗期抗氧化系统对低温胁迫的响应[J]. 植物科学学报, 2019, 37(1): 63-69. DOI: 10.11913/PSJ.2095-0837.2019.10063
Guo Hui, Li Shu-Xing, Sun Ping-Yong, Deng Hua-Feng. Responses of antioxidant system in different genotypes of Oryza sativa seedlings to cold stress[J]. Plant Science Journal, 2019, 37(1): 63-69. DOI: 10.11913/PSJ.2095-0837.2019.10063
Citation: Guo Hui, Li Shu-Xing, Sun Ping-Yong, Deng Hua-Feng. Responses of antioxidant system in different genotypes of Oryza sativa seedlings to cold stress[J]. Plant Science Journal, 2019, 37(1): 63-69. DOI: 10.11913/PSJ.2095-0837.2019.10063
郭慧, 李树杏, 孙平勇, 邓华凤. 不同基因型水稻苗期抗氧化系统对低温胁迫的响应[J]. 植物科学学报, 2019, 37(1): 63-69. CSTR: 32231.14.PSJ.2095-0837.2019.10063
引用本文: 郭慧, 李树杏, 孙平勇, 邓华凤. 不同基因型水稻苗期抗氧化系统对低温胁迫的响应[J]. 植物科学学报, 2019, 37(1): 63-69. CSTR: 32231.14.PSJ.2095-0837.2019.10063
Guo Hui, Li Shu-Xing, Sun Ping-Yong, Deng Hua-Feng. Responses of antioxidant system in different genotypes of Oryza sativa seedlings to cold stress[J]. Plant Science Journal, 2019, 37(1): 63-69. CSTR: 32231.14.PSJ.2095-0837.2019.10063
Citation: Guo Hui, Li Shu-Xing, Sun Ping-Yong, Deng Hua-Feng. Responses of antioxidant system in different genotypes of Oryza sativa seedlings to cold stress[J]. Plant Science Journal, 2019, 37(1): 63-69. CSTR: 32231.14.PSJ.2095-0837.2019.10063

不同基因型水稻苗期抗氧化系统对低温胁迫的响应

基金项目: 国家重点研发计划(2016YFD0101101-4);贵州省农业动植物育种项目(黔农育专字[2017]001,[2018]018);贵州省水稻产业技术体系建设项目(GZCYTX2018-0601);贵州省农科院自主创新科研项目(黔农科院自主创新科研专项字(2014)19号)
详细信息
    作者简介:

    郭慧(1977-),男,博士研究生,研究方向为水稻杂种优势利用(E-mail:nksgh2008@163.com)

    通讯作者:

    邓华凤.Email:denghuafeng@sohu.com

  • 中图分类号: Q945.78

Responses of antioxidant system in different genotypes of Oryza sativa seedlings to cold stress

Funds: This work was supported by grants from the National Key R&D Program of China(2016YFD0101101-4, Agricultural Animal and Plant Breeding Project of Guizhou Province (Qian Nong Yu Zhuan Zi[2017]001,[2018] 018), Guizhou Rice Industry Technology System Construction Project(GZCYTX2018-0601),and Independent Innovation Research Project of Guizhou Academy of Agricultural Sciences([2014]19)
  • 摘要: 以2个籼型水稻(Oryza sativa L. subsp.indica Kato)和2个粳型水稻(O.sativa L. subsp. japonica Kato)品种为材料,比较其幼苗经低温胁迫和恢复生长后的活性氧(ROS)代谢、抗氧化酶活性、抗氧化剂含量和渗透调节物质的变化。结果显示,经低温胁迫后,4个水稻品种的H2O2含量均显著升高;抗氧化酶系统中的5种酶活性均有不同程度升高,且超氧化物歧化酶(SOD)的活性增加显著,而谷胱甘肽还原酶(GR)的活性增加不显著。抗氧化剂还原型谷胱甘肽(GSH)和还原型抗坏血酸(AsA)在‘明恢86’中显著增加。渗透调节物质脯氨酸的含量在‘黔恢1385’和‘日本晴’中变化不显著;可溶性糖含量在‘明恢86’中变化不显著。经过7 d恢复生长后,4个水稻品种的上述各生理指标均不同程度恢复到处理前的水平。研究结果表明,抗氧化酶活性的升高有效降低了ROS的水平,缓解了低温冷害对细胞膜的伤害。低温胁迫时细胞内维持了较高的可溶性糖含量,提高了胞内水势,减少因细胞失水而对植物造成的伤害。
    Abstract: We explored the physiological mechanism of Oryza sativa L. seedlings to resist low temperature stress and different physiological mechanisms of cold tolerance between indica O. sativa and japonica O. sativa. Two indica varieties (O. sativa L. subsp. indica Kato) and two japonica varieties (O. sativa L. subsp. japonica Kato) were used as materials. We compared the changes in reactive oxygen species (ROS) metabolism, antioxidant enzyme activities, antioxidant contents, and osmotic adjustment substances in O. sativa seedlings after low temperature stress and normal temperature recovery. Results showed that the content of H2O2 in the four varieties increased significantly after low temperature stress. The activities of the five enzymes in the antioxidant enzyme system increased to varying degrees; the activity of superoxide dismutase (SOD) increased significantly, whereas that of glutathione reductase (GR) did not. Glutathione (GSH) and ascorbic acid (AsA) were significantly increased in ‘Minghui 86’. The content of the osmotic adjustment substance proline was not significantly changed in ‘Qianhui 1385’ or ‘Nipponbare’, and the soluble sugar content was not significantly changed in ‘Minghui 86’. After 7 d of recovery, the above physiological indices of the four varieties were restored to pre-treatment levels to varying degrees. Results showed that antioxidant enzyme activity effectively reduced the level of ROS and alleviated the damage caused by cold stress to the cell membrane. During low temperature stress, the cells maintained high osmotic adjustment substances, increased intracellular water potential, and reduced damage caused by plant water loss. Therefore, the timely response of various cold-tolerant physiological substances in the cells and the synergistic and efficient operation of the antioxidant system are important physiological indicators for measuring the cold tolerance of O. sativa.
  • [1] 刘吉峰,丁裕国,江志红. 全球变暖加剧对极端气候概率影响的初步探讨[J].高原气象,2007,26(4):837-842. Liu JF,Ding YG,Jiang ZH. The influence of aggravated global warming on the probability of extreme climatic event[J]. Plateau Meteorology,2007,26(4):837-842.
    [2] 刘次桃,王威,毛毕刚,储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传,2018,40(3):171-185.Liu CT,Wang W,Mao BG,Chu CC. Cold stress tolerance in rice:physiological changes,molecular mechanism,and future prospects[J]. Hereditas,2018,40(3):171-185.
    [3] 罗世友,刘红安,邬文昌,幸胜平,肖叶青,陈大洲. 水稻苗期耐冷性研究进展[J]. 江西农业学报,2006,18(1):91-93.Luo SY,Liu HA,Wu WC,Xing SP,Xiao YQ,Chen DZ. Research advance in tolerance to cold of rice at seedling stage[J]. Acta Agricultural Jiangxi,2006,18(1):91-93.
    [4] 戴陆园,叶昌荣,余腾琼,徐福荣. 水稻耐寒性研究:水稻耐冷性研究Ⅰ. 稻冷害类型及耐冷性鉴定评价方法概述[J]. 西南农业学报,2002,15(1):41-45. Dai LY,Ye CR,Yu TQ,Xu FR. Studies on cold tolerance of rice,Oryza sativa L.Ⅰ. Description on types of cold injury and classifications of evaluation methods on cold tole rance in rice[J]. Southwest China Journal of Agricultural Sciences,2002,15(1):41-45.
    [5] 王石华,谭学林,谭亚玲. 不同海拔下水稻正反交F2群体的孕穗期耐冷性研究[J]. 云南农业大学学报,2011,26(6):755-760.Wang SH,Tan XL,Tan YL. Study on cold tolerance at booting stage of rice reciprocal F2 populations generated from the hybrids grown under different altitude[J]. Journal of Yunnan Agricultural University,2011,26(6):755-760.
    [6] 戴玉池,邓霞玲,姜孝成,陈良碧. 不同水稻品种幼苗期的耐寒生理鉴定及其利用[J]. 湖南师范大学自然科学学报,2004,27(3):86-89.Dai YC,Deng XL,Jiang XC,Chen LB. Identification and exploitation of chilling-resistance physiology in different rice seedings[J]. Journal of Natural Science of Hunan Normal University,2004,27(3):86-89.
    [7] Van Breusegem F,Slooten L,Stassart JM,Moens T,Botterman J,et al. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize[J]. Plant Cell Physiol,1999,40(5):515-523.
    [8] Payton P,Webb R,Kornyeyev D,Allen R,Holaday AS. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity[J]. J Exp Bot,2001,52(365):2345-2354.
    [9] Wang CQ,Xu HJ,Liu T. Effect of selenium on ascorbate-glutathione metabolism during PEG-induced water deficit in Trifolium repensL.[J]. J Plant Growth Regul,2011,30(4):436-444.
    [10] 王国骄,王嘉宇,马殿荣,苗微,赵明辉,陈温福. 不同耐冷性杂草稻和栽培稻抗氧化系统对冷水胁迫的响应[J]. 中国农业科学,2015,48(8):1660-1668. Wang GJ,Wang JY,Ma DR,Miao W,Zhao MH,Chen WF. Responses of antioxidant system to cold water stress in weedy and cultivated rice with different chilling sensitivity[J]. Scientia Agricultura Sinica,2015,48(8):1660-1668.
    [11] 宋吉轩,李金还,刘美茹,牛建行,王冉,等. 油菜素内酯对干旱胁迫下羊草渗透调节及抗氧化酶的影响研究[J]. 草业学报,2015,24(8):93-102. Song JX,Li JH,Liu MR,Niu JX,Wang R,et al. Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensisunder drought stress[J]. Acta Prataculturae Sinica,2015,24(8):93-102.
    [12] Ma Y,Dai XY,Xu YY,Luo W,Zeng XM,et al. COLD1 confers chilling tolerance in rice[J]. Cell,2015,160(6):1209-1221.
    [13] Zhang ZY,Li JH,Li F,Liu HH,Yang WS,et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1and enhances rice chilling tolerance[J]. Dev Cell,2017,43(6):731-743.
    [14] Patterson BD,MacRae EA,Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium (Ⅳ)[J]. Anal Biochem,1984,139(2):487-492.
    [15] 李合生. 植物生理生化实验技术与方法[M]. 北京:高级教育出版社,2000.
    [16] 邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社,2000.
    [17] 李忠光,李江鸿,杜朝昆,黄号栋,龚明.在单一提取系统中同时测定五种植物抗氧化酶[J]. 云南师范大学学报:自然科学版,2002,22(6):44-48.Li ZG,Li JH,Du CK,Huang HD,Gong M. Simultaneous measurement of five antioxidant enzyme activities using a single extraction system[J]. Journal of Yunnan Normal University:Natural Sciences,2002,22(6):44-48.
    [18] Zhu WZ,Cao M,Wang SG,Xiao WF,Li MH. Seasonal dynamics of mobile carbon supply in Quercus aquifolioidesat the upper elevational limit[J]. PLoS One,2012,7(3):e34213.
    [19] Bates LS,Waldren RP,Teare ID. Rapid determination of free proline for waters-stress studies[J]. Plant Soil,1973,39:205-207.
    [20] 孙富,杨丽涛,谢晓娜,刘光玲,李杨瑞. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J].作物学报,2012,38(4):732-739. Sun F,Yang LT,Xie XN,Liu GL,Li YR. Effect of chilling stress on physiological metabolism in chloroplasts of seed-lings of sugarcane varieties with different chilling resis tance[J]. Acta Agronomica Sinica,2012, 38(4):732-739.
    [21] Shu DF,Wang LY,Duan M,Deng YS,Meng QW. Antisense-mediated depletion of tomato chloroplast gluta thione reductase enhances susceptibility to chilling stress[J]. Plant Physiol Bioch,2011,49(10):1228-1237.
    [22] Mittal D,Madhyastha DA,Grover A. Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice[J]. PLoS One,2012,7(7):e40899.
    [23] Pamplona R. Advanced lipoxidation end-products[J]. Chem Biol Interact,2011,192(1-2):14-20.
    [24] Gill SS,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Bioch,2010,48(12):909-930.
    [25] 王静,张成军,陈国祥,王萍,施大伟,吕川根. 低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响[J]. 中国水稻科学,2006,20(2):177-182. Wang J,Zhang CJ,Chen GX,Wang P,Shi DW,Lü CG. Effect of low temperature on photosynthetic pigments and thylakoid membrane fatty acid in flag leaves of rice at the milky stage[J]. Chinese Journal of Rice Science,2006,20(2):177-182.
    [26] 时丽冉,刘志华. 干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J]. 草地学报,2010,18(5):673-677.Shi LR,Liu ZH. Influences of drought stress on antioxidative activity and osmoregulation substance of Sonchus brachyotusDC.[J]. Acta Agrestia Sinica,2010,18(5):673-677.
    [27] Yang JH,Gao Y,Li YM,Qi XH,Zhang MF. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J]. Scientia Horticulturae,2008,118(3):200-205.
    [28] Xu MZ,Liu X,Yu LQ. Physiological analysis on mechanisms of cold-tolerance of Dongxiang wild rice(Ⅰ)[J]. Agricultural Science & Technology,2010,11(2):39-43.
    [29] 刘娥娥,宗会,郭振飞,黎用朝. 干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J]. 热带亚热带植物学报,2000,8(3):235-238.Liu EE,Zong H,Guo ZF,Li YC. Effects of drought salt and chilling stresses on proline accumulation in shoot of rice seedlings[J]. Journal of Tropical and Subtropical Botany,2000,8(3):235-238.
  • 期刊类型引用(6)

    1. 冯为迅,杨源通,苏立城,盛晗,隆曼迪,储双双,曾曙才. 施用复合肥对巴戟天产量、养分吸收和寡糖累积量的影响. 华南农业大学学报. 2024(01): 71-79 . 百度学术
    2. 周驰宇,许玉兰,李伟. 氮磷追肥配施对云南松幼苗根系生长的影响. 现代农业科技. 2024(07): 90-93 . 百度学术
    3. 周驰宇,李瑞连,蔡年辉,贺斌,许玉兰. 氮磷配施对云南松幼苗生长及养分的影响. 东北林业大学学报. 2024(06): 7-11+50 . 百度学术
    4. 冯嘉仪,谢姗宴,吴道铭,欧阳健辉,曾曙才. 氮磷钾配施对银杏果实和外种皮产量及品质的影响. 生态学杂志. 2021(06): 1650-1659 . 百度学术
    5. 马琳,陈昌婕,苗玉焕,郭兰萍,刘大会. 基于蕲艾产量和品质的氮肥适宜施用量研究. 植物营养与肥料学报. 2021(09): 1665-1674 . 百度学术
    6. 张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响. 山东农业大学学报(自然科学版). 2020(04): 611-616 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1023
  • HTML全文浏览量:  18
  • PDF下载量:  745
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-09-27
  • 发布日期:  2019-02-27

目录

    /

    返回文章
    返回