De novo assembly and transcriptome analysis of Hylocereus undulatus during development
-
摘要: 利用高通量测序技术对火龙果(Hylocereus undulatus Britt)红肉品种‘大红二号’的花芽、果实和枝条不同发育阶段的基因表达进行研究。结果显示,转录组测序共获得468.68 Gb原始数据(Raw data),从头组装获得239 152条转录本和162 519条unigene,约53.74%的unigene得到注释。分别在43 506条和16 251条unigene中检测到600 283个SNP位点和56 147个SSR位点。基因表达分析结果表明,在火龙果不同组织Fl510、Fl513、Fl514、Fl518、F711、F715、S513、S419中分别有31、7、5、152、17、63、17、8个特异表达的unigene。通过GO和KEGG富集分析,发现了一些组织特异的GO条目和代谢通路,如在Fl510中富集的类萜骨架生物合成代谢通路等。本研究还对参与花发育的候选基因进行了鉴定和表达分析,他们包括COL基因、FT-like基因、分生组织决定基因和器官决定基因等。Abstract: High-throughput sequencing was used to analyze the gene expression of the reproductive buds, fruits, and shoots of Hylocereus undulatus Britt ‘Dahong2’ at different developmental stages. In total, 468.68 Gb of raw data were generated and de novo assembled into 239 152 transcripts and 162 519 unigenes. Approximately 53.74% of all unigenes were annotated based on seven public databases. In total, 600 283 SNPs and 56147 SSRs were identified from 43 506 and 16 251 unigenes, respectively. Gene expression analysis showed that 31, 7, 5, 152, 17, 63, 17, and 8 unigenes were specifically expressed in Fl510, Fl513, Fl514, Fl518, F711, F715, S513, and S419, respectively. Through GO and KEGG enrichment analyses, several unique GO terms and metabolic pathways in different tissues were identified; for example, terpenoid backbone biosynthesis (ko00900) showed significant enrichment in Fl510. We also focused on the molecular mechanism of H.undulatus ‘Dahong2’ flower development and identified a suite of unigenes involved in floral development, including COL, FT-like, meristem identity, and organ identity genes.
-
Keywords:
- Hylocereus undulatus /
- Transcriptome sequencing /
- Growth /
- Floral development /
- Gene expression
-
-
[1] Ortiz TA, Takahashi LS. Physical and chemical characte-ristics of pitaya fruits at physiological maturity[J]. Genet Mol Res, 2015, 14(4):14422-39.
[2] Hua QZ, Chen CJ, Chen Z, Chen PK, Ma YW, et al. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of hylocereus polyrhizus[J]. Front Plant Sci, 2016, 6:1179.
[3] Dong HS, Lee S, Heo DY, Kim YS, Cho SK, et al. Meta-bolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity[J]. J Agric Food Chem, 2014, 62(34):8764-8771.
[4] Kim H, Choi HK, Moon JY, Kim YS, Mosaddik A, et al. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content[J]. J Food Sci, 2011, 76(1):38-45.
[5] Kishore K. Phenological growth stages of dragon fruit (Hylocereus undatus) according to the extended BBCH-scale[J]. Scientia Horticulturae, 2016, 213:294-302.
[6] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
[7] Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate:reference-free quality assessment of de novo transcriptome assemblies[J]. Genome Res, 2016, 26(8):1134-1144.
[8] Li W, Godzik A. Cd-Hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1689.
[9] SimãO FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.
[10] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2015, 12(1):59-60.
[11] Conesa A, Götz, S. Blast2GO:A comprehensive suite for functional analysis in plant genomics[J]. Int J Plant Genomics, 2008, 2008:619832.
[12] Chen Xie, Mao XZ, Huang JJ, Yang D, Wu JM, et al. KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39:316-322.
[13] Finn RD, Clements J, Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Res, 2011, 39:29-37.
[14] Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323-323.
[15] Ernst J, Bar-Joseph Z. STEM:a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7(1):191.
[16] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.
[17] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
[18] Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, et al. BCFtools/RoH:a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32(11):1749-1751.
[19] Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. Evolution of the PEBP gene family in plants:functional diversification in seed plant evolution[J]. Plant physiol, 2011, 156(4):1967-1977.
[20] Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family:functional evolution and molecular mechanisms[J]. Mol Plant, 2015, 8(7):983-997.
[21] Cai D, Liu H, Sang N, Huang X. Identification and cha-racterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.)[J]. PLoS One, 2017, 12(6):e0179038.
[22] Golembeski GS, Kinmonth-Schultz HA, Song YH, Imaizumi T. Photoperiodic flowering regulation in Arabidopsis thaliana[J]. Adv Bot Res, 2014, 72:1-28.
[23] 鲜登宇, 江为, 赵夏云, 汤青林,宋明, 等. 开花整合子SOC1花期调控的分子机制[J]. 中国蔬菜, 2013, 1(6):1-8. Xian DY, Jiang W, Zhao XY, Tang QL, Song M, et al. Molecular mechanism of flowering time control by flowe-ring integration SOC1[J]. China Vegetables, 2013, 1(6):1-8.
[24] Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, et al. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49):17672-17677.
[25] Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants[J]. Curr Opin Plant Biol, 2016, 33:77-82.
-
期刊类型引用(9)
1. 尹明华,李文婷,欧阳茜,王美暄,徐子林,张钦荣,张牧彤,黄添慧,何凡凡,乐芸,张嘉欣,柴桑雪. 苏丹草叶绿体基因组特征及系统发育分析. 草业科学. 2025(01): 101-118 . 百度学术
2. 邱春桃,梁芳梅,吕颖,王鹏良,朱鹏,张虹,许尤厚. 细基江蓠线粒体基因组密码子偏好性分析. 分子植物育种. 2024(08): 2555-2563 . 百度学术
3. 包国媛,李文辛,杨鑫光,王雅琼. 海甜菜线粒体和叶绿体基因组密码子使用偏好性分析. 江苏农业学报. 2023(09): 1804-1817 . 百度学术
4. 张扬,孙曙光,李晴,魏珍. 莴苣线粒体基因组密码子使用偏好性分析. 河南农业科学. 2022(10): 114-124 . 百度学术
5. 李凤,辛静,辛雅萱,肖遥,屈亚亚,王军辉,麻文俊,辛培尧. 楸树叶绿体基因组密码子偏性分析. 南方农业学报. 2021(10): 2735-2743 . 百度学术
6. 黄蔚虹,陈永杰,孙彦阔,孙卫东. H9N2禽流感病毒全基因组密码子使用偏好性及影响因素分析. 华南农业大学学报. 2020(03): 15-22 . 百度学术
7. 李翔,范作义,王井源,王淇,李喜鹏,王德秋,孔令远,曹森林,孟庆刚,赵曦阳. 红松查尔酮合成酶基因CHS密码子偏好性分析. 植物研究. 2020(03): 447-457 . 百度学术
8. 唐向民,杨守臻,陈怀珠,孙祖东,赖振光,曾维英,韦清源. 栽培大豆和野生大豆线粒体基因组密码子使用偏性的比较分析. 广西植物. 2020(07): 926-934 . 百度学术
9. 谭景发,贺文闯,董西龙,党腾飞,谢怿,席锟,孙勇胜,胡亚林,靳德明. 不同水稻种质中渗透胁迫抗性基因DREB2A的遗传多样性分析. 中国农学通报. 2020(35): 1-13 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 933
- HTML全文浏览量: 12
- PDF下载量: 1148
- 被引次数: 14