高级检索+

异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析

施圆圆, 张声祥, 赵德蕊, 王晨凯, 马克龙, 吴家文

施圆圆, 张声祥, 赵德蕊, 王晨凯, 马克龙, 吴家文. 异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析[J]. 植物科学学报, 2019, 37(2): 221-229. DOI: 10.11913/PSJ.2095-0837.2019.20221
引用本文: 施圆圆, 张声祥, 赵德蕊, 王晨凯, 马克龙, 吴家文. 异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析[J]. 植物科学学报, 2019, 37(2): 221-229. DOI: 10.11913/PSJ.2095-0837.2019.20221
Shi Yuan-Yuan, Zhang Sheng-Xiang, Zhao De-Rui, Wang Chen-Kai, Ma Ke-Long, Wu Jia-Wen. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum[J]. Plant Science Journal, 2019, 37(2): 221-229. DOI: 10.11913/PSJ.2095-0837.2019.20221
Citation: Shi Yuan-Yuan, Zhang Sheng-Xiang, Zhao De-Rui, Wang Chen-Kai, Ma Ke-Long, Wu Jia-Wen. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum[J]. Plant Science Journal, 2019, 37(2): 221-229. DOI: 10.11913/PSJ.2095-0837.2019.20221
施圆圆, 张声祥, 赵德蕊, 王晨凯, 马克龙, 吴家文. 异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析[J]. 植物科学学报, 2019, 37(2): 221-229. CSTR: 32231.14.PSJ.2095-0837.2019.20221
引用本文: 施圆圆, 张声祥, 赵德蕊, 王晨凯, 马克龙, 吴家文. 异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析[J]. 植物科学学报, 2019, 37(2): 221-229. CSTR: 32231.14.PSJ.2095-0837.2019.20221
Shi Yuan-Yuan, Zhang Sheng-Xiang, Zhao De-Rui, Wang Chen-Kai, Ma Ke-Long, Wu Jia-Wen. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum[J]. Plant Science Journal, 2019, 37(2): 221-229. CSTR: 32231.14.PSJ.2095-0837.2019.20221
Citation: Shi Yuan-Yuan, Zhang Sheng-Xiang, Zhao De-Rui, Wang Chen-Kai, Ma Ke-Long, Wu Jia-Wen. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum[J]. Plant Science Journal, 2019, 37(2): 221-229. CSTR: 32231.14.PSJ.2095-0837.2019.20221

异叶天南星苯丙氨酸解氨酶基因的克隆与蛋白结构分析

基金项目: 

名贵中药资源可持续利用能力建设项目(2060302);安徽高校自然科学研究重大项目(KJ2018ZD028);安徽省自然科学基金项目(1608085MH177);安徽省留学人员科技活动启动项目(20151x024);国家级大学生创新创业训练项目(201810369050);国家自然科学基金(81373598)。

详细信息
    作者简介:

    施圆圆(1993-),女,硕士研究生,研究方向为中草药基因研究(E-mail:871735748@qq.com)。

    通讯作者:

    吴家文,E-mail:wujiawen@ahtcm.edu.cn

  • 中图分类号: Q943.2

Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum

Funds: 

This work was supported by grants from the Sustainable Utilization of Famous Traditional Chinese Medicine Resources (2060302), Natural Science Research Grant of Higher Education of Anhui Province (KJ2018ZD028), Natural Science Foundation of Anhui Province of China (1608085MH177), Anhui Province Scientific Research Foundation for the Returned Overseas Chinese Scholars (20151x024), National Students' Platform for Innovation and Entrepreneurship Training Program (201810369050), and National Natural Science Foundation of China (81373598).

  • 摘要: 以异叶天南星(Arisaema heterophyllum Blume)为材料,采用逆转录PCR(RT-PCR)法扩增其苯丙氨酸解氨酶(Phenylalanine ammonia-lyase,PAL)基因AhPAL,获得该基因的开放读码框(ORF),并通过系统的生物信息学软件分析AhPAL的结构和理化性质。结果显示,AhPAL的ORF全长为2184 bp,编码727个氨基酸;AhPAL与郁金香(Tulipa fosteriana W.Irving)PAL的亲缘关系最近,序列相似性达88%。空间结构模型分析结果显示,AhPAL为同型四聚体,每个单体由3个结构域组成,其中MIO结构域含有PAL酶家族的保守序列和Ala-Ser-Gly三肽活性中心,是AhPAL酶活性的决定性结构域。利用荧光定量PCR方法检测3个AhPAL Unigene在根、块茎和叶中的表达情况,发现它们在根中表达量均最高,而在叶和块茎中表达较低。
    Abstract: Phenylalanine ammonia-lyase (PAL) is the first key enzyme in the synthesis of flavonoids and the rate-limiting enzyme of the phenylpropanoid pathway, which is associated with secondary metabolites, growth and development, as well as defense of plants. In this study, the mRNA of Arisaema heterophyllum Blume was used as a template and the full-length open reading frame (ORF) of the phenylalanine ammonia-lyase gene (AhPAL) was amplified by real-time polymerase chain reaction (RT-PCR). The structure and physicochemical properties of AhPAL were then analyzed by bioinformatics. Results showed that the ORF of AhPAL was 2,184 bp in length, encoding a protein with 727 amino acids. Furthermore, AhPAL had the closest relationship with PAL of Tulipa fosteriana W. Irving, with a sequence identity of 88%. Structure analysis indicated that AhPAL was a homotypic tetramer, and each monomer consisted of three domains. Among these domains, the MIO domain was highly important for the activity of AhPAL, containing a conserved sequence of the PAL family and Ala-Ser-Gly triad residues. The expression levels of three AhPAL unigenes in the roots, tubers, and leaves were detected by quantitative RT-PCR (qRT-PCR), with higher expression found for all three in the roots compared with that in the leaves and tubers.
  • [1] 徐大林, 朴花子, 陈正爱. 异叶天南星的药理作用研究进展[J]. 延边大学医学学报, 2013(4):322-324.

    Xu DL, Piao HZ, Chen ZA. Research development in Arisaema heterophyllum Blume. on pharmacological activities[J]. Journal of Medical Science Yanbian University, 2013(4):322-324.

    [2] 何达海, 丁克毅, 王晓玲. 天南星属植物化学成分研究进展[J]. 西南民族大学学报(自然科学版), 2014, 40(6):861-865.

    He DH, Ding KY, Wang XL. Chemical constituent research progress on plants belonging genus Arisaema[J]. Journal of Southwest University for Nationalities(Natural Science Edition), 2014, 40(6):861-865.

    [3] 张帅. 药用植物天南星中有效成分的筛选和药理学研究[D]. 郑州:郑州大学, 2013.
    [4] 闵巍巍, 张作法. 黄酮类化合物的药理作用[J]. 蚕桑通报, 2007, 38(4):1-3.

    Min WW, Zhang ZF. Research development in flavonoids on pharmacological activities[J]. Bulletin of Sericulture, 2007, 38(4):1-3.

    [5]

    Mrvová N, Škandík M, Kuniaková M. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester[J]. Neurochem Int, 2015, 90:246-254.

    [6]

    Li Y, Ma C, Qian M, Wen ZM, Jing HY, et al. Butein induces cell apoptosis and inhibition of cyclooxygenase-2 expression in A549 lung cancer cells[J]. Mol Med Rep, 2014, 9:763-767.

    [7]

    Min N, Leong PT, Lee RCH, Khuan JSE, Chu JJH. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication[J]. Antiviral Res, 2018, 150:60-68.

    [8] 黄小贞, 赵德刚. 植物苯丙氨酸解氨酶表达调控机理的研究进展[J]. 贵州农业科学, 2017, 45(4):16-20.

    Huang XZ, Zhao DG. Research progress in regulation and control mechanism of phenylalanine ammonia lyasein plants[J].Guizhou Agricultural Sciences, 2017, 45(4):16-20.

    [9] 徐晓梅, 杨署光. 苯丙氨酸解氨酶研究进展[J]. 安徽农业科学, 2009, 37(31):15115-15119.

    Xu XM, Yang SG. Advances in the studies of phenylalanine ammonia-lyase[J]. Journal of Anhui Agricultural Science, 2009, 37(31):15115-15119.

    [10] 乔枫, 耿贵工, 张丽, 金兰, 陈志. 枸杞苯丙氨酸解氨酶基因的克隆与表达分析[J]. 中国农业大学学报, 2017, 22(12):64-73.

    Qiao F, Geng GG, Zhang L, Jin L, Chen Z. Molecular cloning and expression pattern of LcPAL from Lycium chinense[J]. Journal of China Agricultural University, 2017, 22(12):64-73.

    [11]

    Zhang C, Wang X, Zhang F, Dong LD, Wu JJ, et al. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection[J]. Sci Rep, 2017, 7:7242.

    [12] 虞光辉, 王桂平, 王亮, 尹华燕, 牟晶晶, 等. 小麦PAL基因的克隆及赤霉菌诱导下的表达分析[J]. 植物遗传资源学报, 2015, 16(5):1055-1061.

    Yu SH, Wang GP, Wang L, Yin HY, Mou JJ, et al. Cloning of PAL genes and their response to FHB in wheat[J]. Journal of Plant Genetic Resources, 2015, 16(5):1055-1061.

    [13]

    Zhu Q, Xie X, Lin H, Sui SZ, Shen RX, et al. Isolation and functional characterization of a phenylalanine ammonia-Lyase gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) Codd)[J]. Molecules, 2015, 20:16833-16851.

    [14] 赵志常, 高爱平, 陈业渊, 黄建峰, 党志国, 等. 芒果PAL基因的克隆与序列分析[J]. 安徽农业大学学报, 2015, 42(5):825-830.

    Zhao ZJ, Gao AP, Chen YY, Huang JF, Dang ZG, et al. Cloning and sequence analysis of the PAL gene from mango (Mangifera indica)[J]. Journal of Anhui Agricultural University, 2015, 42(5):825-830.

    [15]

    Ritter H. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase[J]. Plant Cell, 2004, 16:3426-3436.

    [16]

    Jun SY, Sattler SA, Cortez GS, Vermerris W, Sattler SE, et al. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-Lyase[J]. Plant Phy-siol, 2018, 176:1452-1468.

    [17]

    Khan W, Prithiviraj B, Smith DL. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonialyase activities in soybean leaves[J]. Plant Physiol, 2003, 160:859-863.

    [18]

    Nag S.Kumaria S. In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea Griff. ex Lindl[J]. Phytochemistry, 2018, 156:176-183.

    [19]

    Ghasemi S, Kumleh HH. Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress[J]. Protoplasma, 2019,256(1):279-290.

    [20]

    Li CL, Bai YC, Chen H, Zhao HX, Shao JR, et al. Cha-racterization and functional analysis of a phenylalanine ammonia-lyase gene (FtPAL) from Fagopyrum tataricum Gaertn[J]. Plant Mol Biol Rep, 2012, 30(5):1172-1182.

    [21]

    Lin W, Liu A, Weng C, Li H, Sun SW, et al. Cloning and characterization of a novel phenylalanine ammonia-lyase gene from Inonotus baumii[J]. Enzyme Microb Technol, 2018, 112:52-58.

    [22]

    Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T. Crystal structure of phenylalanine ammonia lyase:multiple helix dipoles implicated in catalysis[J]. Biochemistry, 2004, 43:11403-11416.

    [23]

    MacDonald MJ, D'Cunha GB. A modern view of pheny-lalanine ammonia lyase[J]. Biochem Cell Biol, 2007, 85:273-282.

    [24]

    Pilbák S, Tomin A, Rétey J. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases[J]. FEBS J, 2006, 273:1004-1019.

    [25]

    Ma WL, Wu M, Wu Y, Ren ZM, Zhong, Y. Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis[J]. Plant Cell Rep, 2013,32(8), 1179-1190.

    [26]

    Xu F, Deng G, Cheng S, Zhang W, Huang X. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia[J]. Molecules, 2012, 17(12), 7810-7823.

    [27]

    Liu RR, Xu SH, Li JL, Hu YL, Lin ZP. Expression profile of a PAL gene from Astragalus membranaceus var. mongholicus and its crucial role in flux into flavonoid biosynthesis[J]. Plant Cell Rep, 2006, 25:705-710.

    [28]

    Zhao S, Tuan PA, Li X,Kim YB, Kim H, et al. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense[J]. BMC Genomics, 2013, 14:802.

  • 期刊类型引用(7)

    1. 张文香,杨再琴,潘柔柔,罗倩倩,吴超,曹剑锋. 百蕊草苯丙氨酸解氨酶基因的克隆与表达分析. 分子植物育种. 2025(04): 1098-1104 . 百度学术
    2. 赵咏洋,陈维嘉,丁静峰,敖以恒,冯傲,周嘉裕. 决明苯丙氨酸解氨酶(PAL)基因家族的全基因组分析. 湖北农业科学. 2023(06): 181-187 . 百度学术
    3. 杨翠凤,滕峥,韦春,刘正鲁. 百香果苯丙氨酸解氨酶基因PePAL克隆及表达分析. 河南农业科学. 2023(10): 100-108 . 百度学术
    4. 周成城,谢德金,万志庭,陈凌艳,郑郁善. 巴戟天苯丙烷类代谢途径相关基因的克隆与表达. 应用与环境生物学报. 2021(01): 158-166 . 百度学术
    5. 郭英男,刘月扬,马静雨,张敬,马鑫彤,张馨月,刘建雨,姚娜,刘秀明,李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药. 2021(11): 3362-3372 . 百度学术
    6. 乔枫,贺杰,耿贵工,王汉,张勐,郭晨微,陈剑云,谢惠春. 铯胁迫下青稞幼苗生理指标和苯丙氨酸解氨酶基因表达的变化. 分子植物育种. 2020(24): 8255-8266 . 百度学术
    7. 赵历强,单春苗,张声祥,施圆圆,马克龙,吴家文. 基于转录组测序的细风轮花青素合成途径及关键酶基因分析. 植物研究. 2020(06): 886-896 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  836
  • HTML全文浏览量:  6
  • PDF下载量:  741
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-10-24
  • 修回日期:  2018-11-13
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-04-27

目录

    /

    返回文章
    返回