Biological effects of carbon quantum dots on model plant Arabidopsis thaliana
-
摘要: 以模式植物拟南芥(Arabidopsis thaliana(L.)Heynh)为材料,从生理及分子层面研究碳量子点(Carbon quantum dots,CQDs)对拟南芥生物效应的影响。结果显示,CQDs能被拟南芥根部吸收并连续运输到叶片,对种子萌发率无明显影响,但能显著促进幼苗主根伸长和株重的增加。幼苗叶片叶绿体中色素含量随CQDs浓度的升高而显著降低。脯氨酸与丙二醛含量随CQDs浓度的升高呈先上升后下降趋势。超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随CQDs浓度的升高呈先上升后下降趋势,在抗氧化酶系统中起主导作用;叶片内源过氧化氢(H2O2)的积累随CQDs浓度的升高而升高,具有显著的浓度依赖效应。与其他纳米材料处理不一样的是,硫同化及胁迫相关基因在CQDs处理后表达量下调,这可能与CQDs粒子本身的特性有关。Abstract: Based on the model plant Arabidopsis thaliana (L.) Heynh, we studied the biological effects of carbon quantum dots (CQDs), a new nanomaterial, and investigated their distribution and transportation, effects on growth and development, photosynthetic pigment content, oxidative stress, and stress-related gene expression levels in A. thaliana. Results showed that CQDs could be absorbed by the roots of A. thaliana and transported continuously to the leaves, which had no significant effect on seed germination rate, but significantly promoted the growth of seedling roots and plant weight. With the increase in CQD concentration, the pigment content in the chloroplast of seedlings decreased significantly, whereas the content of proline and malondialdehyde increased at first and then decreased. Superoxide dismutase (SOD) and catalase (CAT) played a leading role in the antioxidant enzyme system, and showed increasing and then decreasing activity as CQD concentration increased. The accumulation of endogenous hydrogen peroxide (H2O2) in leaves also indicated that CQDs could induce oxidative stress with concentration-dependent effects. Sulfur assimilation and stress-related genes were down-regulated after CQD treatment, which might be related to the characteristics of the CQD particles themselves. These results are of great significance for exploration of the molecular mechanisms of the bio-effects of nanomaterials on plants and for evaluating their biosafety.
-
Keywords:
- Arabidopsis thaliana /
- Carbon quantum dots /
- Biological effects /
- Gene expression
-
-
[1] Yang ST,Wang X,Wang H, Lu F,Luo PG, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42):18110-18114.
[2] 闫鹏, 艾凡荣, 严喜鸾, 刘东雷. 碳量子点的生物应用:成像、载药与毒性[J].材料导报, 2017, 31(19):35-42. Yan P, Ai FR, Yan XL, Liu DL. Biological applications of carbon quantim dots:bioimaging, drug delivery and toxicity[J]. Materials Review, 2017, 31(19):35-42.
[3] 郑广强, 吕小慧, 朱小山, 姚琨, 蔡中华. 碳量子点的生物毒性研究进展[J]. 中国科学:化学, 2017, 47(10):1070-1078. Zheng GQ, Lü XH, Zhu XS, Yao K, Cai ZH. Research progress in toxicity of carbon quantum dots[J]. Scientia Sinica Chimica, 2017, 47(10):1170-1178. [4] Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant[J]. Appl Nanosci, 2015, 5(5):609-616.
[5] Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC. Carbon nanomaterials in agriculture:A critical review[J]. Front Plant Sci, 2016, 7(1770):172.
[6] Wang HB, Zhang ML, Song YX, Li H, Huang H, et al. Carbon dots promote the growth and photosynthesis of mung bean sprouts[J]. Carbon, 2018, 136:94-102.
[7] Chen J, Dou R, Yang Z, Wang X, Mao C, et al. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.)[J]. Nanotoxicology, 2016, 10(6):818-828.
[8] Liu JH, Yang ST, Chen XX, Wang H. Fluorescent carbon dots and nanodiamonds for biological imaging:preparation, application, pharmacokinetics and toxicity[J]. Curr Drug Metab, 2012, 13(8):1046-1056.
[9] Yan Z, Chen J, Xiao A, Shu J, Chen J. Effects of representative quantum dots on microorganisms and phytoplankton:a comparative study[J]. Rsc Adv, 2015, 5(129):106406-106412.
[10] Xiao A, Wang C, Chen J, Guo R, Yan Z, Chen J. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa[J]. Ecotox Environ Safe, 2016, 133:211-217.
[11] 祝沛平. 用于基因组分析的模式植物拟南芥[J]. 生命世界, 2000, 6:35. Zhu PP. Model plant Arabidopsis thaliana for genomic analysis[J]. Life World, 2000, 6:35.
[12] Liu H, Ma C, Chen G, White JC, Xing B, Dhankher OP. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana[J]. Acs Sustain Chem Eng, 2017, 5(4):3204-3213.
[13] Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chem Soc Rev, 2015, 44(1):362-81.
[14] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000. [15] Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies[J]. Plant Soil, 1973, 39(1):205-207.
[16] Ramírez V, Coego A, López A, Agorio A, Flors V, Vera P. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator[J]. Plant J, 2009, 58(4):578-591.
[17] Giannopolitis CN, Ries SK. Superoxide dismutases:Ⅰ. Occurrence in higher plants[J]. Plant Physiol, 1977, 59(2):309-314.
[18] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiol, 1992, 98(4):1222.
[19] 张亚宏, 孙万仓, 魏文慧, 武军艳, 曾军, 等. 自交对甘蓝型油菜叶片SOD, CAT, APX活性的影响[J]. 华北农学报, 2008, 23(1):105-108. Zhang YH, Sun WC, Wei WH, Wu JY, Zeng J, et al. Change of SOD, CAT and APX of Brassica napus infected by selfing in total growth period[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1):105-108.
[20] 张国民, 徐丽梅. 苗期低温对玉米叶绿素含量及生长发育的影响[J]. 黑龙江农业科学, 2000(1):10-12. Zhang GM, Xu LM, The effect of low temperature on chlorophyll content and growth of Maize at seedling stage[J]. Heilongjiang Agricultural Sciences, 2000(1):10-12.
[21] 彭凌涛, 王江, 李琳, 安林升, 张景六. 水稻谷氨酰半胱氨酸合成酶基因的结构和表达分析[J]. 植物生理与分子生物学学报, 2004, 30(5):533-540. Peng LT, Wang J, Li L, An LS, Zhang JL. Structure and expression analysis of the gama-glutamylcysteine synthetase gene in rice[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5):533-540.
[22] Ali MB, Hahn EJ, Paek KY. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis[J]. Plant Physiol Bioch, 2005, 43(3):213-223.
[23] Asada K. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants[J]. CSH Perspect Biol, 1997, 34:715-735.
[24] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, et al. Uptake and distribution of ultra-small anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Lett, 2010, 10(7):2296-2302.
[25] Carpita N, Sabularse D, Montezinos D, Delmer DP. Determination of the pore size of cell walls of living plant cells[J]. Science, 1979, 205(4411):1144-1147.
[26] Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, et al. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotianax anthi) seedlings[J]. Nanotoxicology, 2011, 6(4):353-360.
[27] Canas JE, Long M, Nations S, Vandan R, Dai L, et al. Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Eviron Toxicol Chem, 2008, 27(9):1922-1931.
[28] Khodakovskaya MV, De SK, Nedosekin DA, Dervishi E, Biris AS, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions[J]. Proc Natl Acad Sci USA, 2011, 108(3):1028-1033.
[29] 兰丽贞, 赵群芬, 金凯星. 环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J]. 核农学报, 2018, 32(2):389-398. Lan LZ, Zhao QF, Jin KX. Effects of nano-TiO2 on growth and gene expression in Arabidopsis thaliana[J]. Acta Agriculturae Nucleatae Sinica, 2018, 32(2):389-398.
[30] Matile P, Hortensteiner S, Thomas H, Krautler B. Chlorophyll breakdown in senescent leaves[J]. Plant Physiol, 1996, 112(4):1403-1409.
[31] Ursache-Oprisan M, Foca-Nici E, Cirlescu A, Caltun O, Creanga D. Oleate coated magnetic cores based on magnetite, Zn ferrite and Co ferrite nanoparticles-preparation, physical characterization and biological impact on Helianthus annuus photosynthesis[J]. AIP Conference Proceedings, 2010, 1311(1):425-430.
[32] Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-shinozaki K, Shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant Cell Physiol, 1997, 38(10):1095-1102.
[33] Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97.
[34] Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress[J]. Nature, 2011, 478(7367):76-81.
[35] 赵风斌, 王丽卿, 季高华. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响[J]. 环境污染与防治, 2012, 34(10):40-44. Zhao FB, Wang LQ, Ji GH. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants[J]. Environ Pollution and Control, 2012, 34(10):40-44.
[36] 杨舒贻, 陈晓阳, 惠文凯, 任颖, 马玲. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报, 2016, 45(5):481-489. Yang SY, Chen XY, Hui WK, Ren Y, Ma L. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University, 2016, 45(5):481-489.
[37] Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)[J]. Physiol Plantarum, 1991, 83(3):463-468.
[38] 白英俊, 李国瑞, 黄凤兰. 活性氧与植物抗氧化系统研究进展[J]. 安徽农业科学, 2017, 45(36):1-3. Bai YJ, Li GR, Huang FL. Research progress of reactive oxygen species and plant antioxidant system[J]. Journal of Anhui Agricultural Sciences, 2017, 45(36):1-3.
[39] 杜琳, 张荃. 植物谷胱甘肽与抗氧化胁迫[J]. 山东科学, 2008, 21(2):27-32. Du L, Zhang Q. Glutathione and oxidative stress tolerance of plants[J]. Shandong Science, 2008, 21(2):27-32.
[40] 王玮玮, 唐亮, 周文龙. 谷胱甘肽生物合成及代谢相关酶的研究进展[J]. 中国生物工程杂志, 2014, 34(7):89-95. Wang WW, Tang L, Zhou WL. Progress in the biosynthesis and metabolism of glutathione[J]. Journal of Chinese Biotechnology, 2014, 34(7):89-95.
[41] Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, et al. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot[J]. J Hazard Mater, 2012, 241:55-62.
[42] Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions[J]. Environ Sci Tech, 2013, 47(18):10637-10644.
[43] Ma C, Chhikara S, Xing B, Musante C, White J, Dhankher O. Physiological and molecular response of Arabidopsis thaliana to nanoparticle cerium and indium oxide exposure[J]. Acs Sustain Chem En, 2013, 1(7):768-778.
-
期刊类型引用(2)
1. 冯晓婷,张漪,武娜. 碳点的制备及其对绿豆生长的影响. 吕梁学院学报. 2023(02): 23-26 . 百度学术
2. 王欢欢,董元杰. 碳量子点缓解黑麦草镉胁迫的效应与机制. 中国草地学报. 2023(06): 23-31 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 958
- HTML全文浏览量: 4
- PDF下载量: 838
- 被引次数: 4