高级检索+

染色体数据的挖掘及其在植物多样性进化研究中的利用

孙文光, 孙航, 李志敏

孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用[J]. 植物科学学报, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260
引用本文: 孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用[J]. 植物科学学报, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260
Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260
Citation: Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. DOI: 10.11913/PSJ.2095-0837.2019.20260
孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用[J]. 植物科学学报, 2019, 37(2): 260-269. CSTR: 32231.14.PSJ.2095-0837.2019.20260
引用本文: 孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用[J]. 植物科学学报, 2019, 37(2): 260-269. CSTR: 32231.14.PSJ.2095-0837.2019.20260
Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. CSTR: 32231.14.PSJ.2095-0837.2019.20260
Citation: Sun Wen-Guang, Sun Hang, Li Zhi-Min. Chromosome data mining and its application in plant diversity research[J]. Plant Science Journal, 2019, 37(2): 260-269. CSTR: 32231.14.PSJ.2095-0837.2019.20260

染色体数据的挖掘及其在植物多样性进化研究中的利用

基金项目: 

国家自然科学基金项目(31670206);中国科学院A类战略性先导科技专项(XDA20050203)。

详细信息
    作者简介:

    孙文光(1990-),男,博士研究生,研究方向为植物染色体进化与细胞地理学(E-mail:sunwenguang@mail.kib.ac.cn)。

    通讯作者:

    孙航,E-mail:sunhang@mail.kib.ac.cn

    李志敏,E-mail:lizhimin_vip@163.com

  • 中图分类号: Q941+.2

Chromosome data mining and its application in plant diversity research

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31670206) and Strategic Priority Research Program of Chinese Academy of Sciences (XDA 20050203).

  • 摘要: 多倍化(或全基因组加倍)是植物物种形成的重要途径,现存的被子植物可能都发生过一次甚至多次多倍化事件。多倍化传统的定义是染色体数目相对于祖先类群呈整倍性增加。其中最常用的研究方法是核型分析,核型能够提供物种的基本细胞学参数,包括染色体数目、倍性水平、核型不对称性、核型变异系数等。目前核型研究的趋势表现出从物种基本核型参数分析逐渐演化到多类群、多学科交叉融合的特点:一方面植物核型分析从种群、物种、科属的类群到生命之树,探讨染色体核型在各支系的进化特征、趋势以及驱动植物系统进化的细胞学机制;另一方面探讨和分析区域或生态系统植物区系的染色体谱或倍性等细胞学特征,可以探究区域地质环境变化或生态环境对染色体倍性等的影响,或通过区域染色体谱的构建,分析区域植物区系的形成和进化历史。因而,植物核型研究为系统发育、分子系统进化、生命之树以及植物区系地理的起源和演化研究提供了新思路。越来越多的新方法、新手段在植物核型分析与多倍化研究中得到运用,从而揭示了植物类群或植物区系的染色体进化以及细胞地理特征。今后植物细胞学研究趋势会向多学科交叉融合,整合各研究领域证据,从不同水平角度综合分析植物核型多样性形成的原因及意义,从而更加全面地认识和理解植物物种多样化与物种形成原因。
    Abstract: Polyploidy(or whole-genome doubling) is an important pathway for plant speciation, with existing angiosperms possibly occurring once or even multiple times. The traditional definition of polyploidization is that the number of chromosomes doubles relative to the ancestral group. The most commonly used research method for understanding polyploidy is karyotype analysis, which provides basic cytological parameters of the studied species, including chromosome number, ploidy level, karyotypic asymmetry, and karyotype coefficient of variation. At present, karyotype research has evolved from basic parameter analysis of species to multi-group/multi-disciplinary study, with an associated shift from lower taxonomic level (e.g., population, species, or family/genus) to higher taxonomic level research (e.g., tree of life). In addition, the integration of phylogeny and karyotypes will provide insightful evidence on the potential evolutionary characteristics and tendencies of karyotypes, and the cytological mechanism driving the evolution of plant diversity at the phylogenetic scale. Furthermore, exploring cytological features of the chromosome atlas or polyploidy at the regional or floral scale will help elucidate the influence of geo-ecological environmental shifts on chromosome ploidy. Additionally, constructing a regional chromosome atlas will shed light on the formation and evolutionary history of flora. Plant karyotype research provides new ideas for study on the origin and evolution of systematics, molecular phylogeny, tree of life, and floristic geography. As new methods are used in plant karyotype analysis and polyploidy, results on the effects and mechanisms will reveal the chromosomal evolution and cellular geographic features of plant groups and flora. Future trends in plant cytology research will be multi-disciplinary and integrate evidence from various research fields and will clarify the causes and significance of plant karyotype diversity at different levels to more fully understand plant species diversity and speciation.
  • [1]

    Rieseberg LH, Willis JH. Plant speciation[J]. Science, 2007, 317(5840):910-914.

    [2]

    Stebbins GL. Chromosomal Evolution in Higher Plants[M]. New York:Addison Wesley, 1971.

    [3] 洪德元. 植物细胞分类学[M]. 北京:科学出版社, 1990.
    [4]

    Lewis WH. Polyploidy in Angiosperms:Dicotyledons[M]//Lewis WH, ed. Polyploidy. New York:Plenum Press, 1980.

    [5]

    Ramsey J, Schemske DW. Neopolyploidy in flowering plants[J]. Annu Rev Ecol Syst, 2002, 33:589-639.

    [6]

    Ehrendorfer F. Polyploidy and distribution[M]//Lewis WH, ed. Polyploidy. New York:Plenum Press, 1980.

    [7]

    Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since plant speciation[J]. New Phytol, 2004, 161(1):173-191.

    [8]

    Arrigo N, Barker MS. Rarely successful polyploids and their legacy in plant genomes[J]. Curr Opin Plant Biol, 2012, 15(2):140-146.

    [9]

    Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, et al. Recently formed polyploid plants diversify at lower rates[J]. Science, 2011, 333(6047):1257-1257.

    [10]

    Wolfe KH. Yesterday's polyploids and the mystery of diploidization[J]. Nature Rev Genet, 2001, 2(5):333-341.

    [11]

    Bennett MD, Smith JB, Seal AG. The karyotype of the grass Zingeria biebersteiniana (2n=4) by light and electron microscopy[J]. Can J Genet Cytol, 1986, 28(4):554-562.

    [12]

    Violetta K, Pistrick K, Gernand D, Meister A, Ghukasyan A, et al. Characterisation of the low-chromosome number grass Colpodium versicolor (Stev.) Schmalh.(2n=4) by molecular cytogenetics[J]. Caryologia, 2005, 58(3):241-245.

    [13]

    Stedje B. A new low chromosome number for Ornithogalum tenuifolium (Hyacinthaceae)[J]. Plant Syst Evol, 1988, 161(1-2):65-69.

    [14]

    Vanzela AL, Guerra M, Luceno M. Rhynchospora tenuis Link (Cyperaceae):a species with the lowest number of holocentric chromosomes (n=2)[J]. Cytobios, 1996, 88:219-228.

    [15]

    Jackson R. Chromosomal evolution in Haplopappus gracilis:a centric transposition race[J]. Evolution, 1973, 27(2):243-256.

    [16]

    Watanabe K, Short P, Kosuge K, Smith-White S. The cytology of Brachyscome Cass. Asteraceae:Astereae).Ⅱ. Hybridisation between B. goniocarpa (n=4) and B. dichromosomatica (n=2)[J]. Aust J Bot, 1991, 39(5):475-485.

    [17]

    Uhl CH. Chromosomes of Mexican SedumⅡ. Section Pachysedum[J]. Rhodora, 1978, 80(824):491-512.

    [18]

    Khandelwal S. Chromosome evolution in the genus Ophioglossum L.[J]. Bot J Linn Soc, 1990, 102(3):205-217.

    [19]

    Lysák MA, Schubert I. Mechanisms of chromosome rearrangements[M]//Greilhuber J, Dolezel J, Wendel JF, eds. Plant Genome Diversity:Vol. 2. New York:Springer Wien Heidelberg, 2013.

    [20]

    Luo JC, Sun XJ, Cormack BP, Boeke JD. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast[J]. Nature, 2018, 560(7718):392-396.

    [21]

    Shao YY, Lu N, Wu ZF, Cai C, Wang SS, Zhang LL, Zhou F, Xiao SJ, Liu L, Zeng XF. Creating a functional single-chromosome yeast[J]. Nature, 2018,560(7718):331.

    [22]

    Lutz AM. A preliminary note on the chromosomes of Oelignothera lamarckiana and one of its mutants, O. gigas[J]. Science, 1907, 26(657):151-152.

    [23]

    Winkler H. Ueber die experimentelle erzeugung von pflanzen mit abweichender chromosomenzahl[J]. Zeitschrift für Botanik, 1916, 8:417-531.

    [24]

    Winge O. The chromosome:their numbers and general importance[J]. Compt Rend Trav Lab Carlsberg, 1917(13):131.

    [25]

    Darlington CD. Recent Advances in Cytology[M]. Philadelphia:Blakiston's son and Co, 1937.

    [26]

    Grant V. Plant Speciation[M]. 2nd ed. New York:Columbia University Press, 1981.

    [27]

    Kihara H, Ono T. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten[J]. Z Zellforsch Mikrosk Anat, 1926, 4(3):475-481.

    [28]

    Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annu Rev Ecol Syst, 1998, 29(1):467-501.

    [29]

    Soltis DE, Soltis PS, Rieseberg LH. Molecular data and the dynamic nature of polyploidy[J]. Crit Rev Plant Sci, 1993, 12(3):243-273.

    [30]

    Soltis DE, Visger CJ, Soltis PS. The polyploidy revolution then…and now:Stebbins revisited[J]. Am J Bot, 2014, 101(7):1057-1078.

    [31]

    Tate JA, Soltis DE, Soltis PS. Polyploidy in plants[M]//Gregory TR, ed. The Evolution of the Genome. San Diego:Elsevier Science and Technology, Academic Press, 2005, 371-426.

    [32]

    Bennett MD, Leitch IJ. Plant genome size research:a field in focus[J]. Ann Bot, 2005, 95(1):1-6.

    [33]

    Stebbins GL. Cytological characteristics associated with the different growth habits in the dicotyledons[J]. Am J Bot, 1938, 25(3):189-198.

    [34]

    Stebbins GL. Variationand Evolutionin Plants[M]. New York:Columbia University Press, 1950.

    [35]

    Lewitsky G. The karyotype in systematics (on the base of karyology of the subfamily Helleborae)[J]. Trudy Prikl Bot, 1931, 27:187-240.

    [36]

    Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, et al. The chromosome counts database (CCDB) -a community resource of plant chromosome numbers[J]. New Phytol, 2015, 206(1):19-26.

    [37]

    Brad B, Nicole H, Lu Z, Antonio RGJ, Dmitry M, et al. The taxonomic name resolution service:an online tool for automated standardization of plant names[J]. BMC Bioinformatics, 2013, 14(1):1-15.

    [38]

    Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.

    [39]

    Wu ZY, Raven PH, Hong DY, et al. Flora of China:Vol. 1-24[M]. Beijing:Science Press, 1994-2013.

    [40]

    Wu PC, Crosby MR, et al. Moss Flora of China:Vol. 1-2[M]. Beijing:Science Press, 1999-2005.

    [41]

    Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H. Polyploidy in the flora of the Hengduan Mountains hotspot, southwes-tern China[J]. Ann Missouri Bot Gard, 2005, 92(2):275-306.

    [42] 王家坚, 彭智邦, 孙航, 聂泽龙, 孟盈. 青藏高原与横断山被子植物区系演化的细胞地理学特征[J]. 生物多样性, 2017, 25(2):218-225.

    Wang JJ, Peng ZB, Sun H, Nie ZL, Meng Y. Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and Hengduan Mountains[J]. Biodiversity Science, 2017, 25(2):218-225.

    [43]

    Adams KL, Wendel JF. Polyploidy and genome evolution in plants[J]. Curr Opin Plant Biol, 2005, 8(2):135-141.

    [44]

    Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy[J]. New Phytol, 2010, 186(1):5-17.

    [45]

    Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. The frequency of polyploid speciation in vascular plants[J]. Proc Natl Acad Sci USA, 2009, 106(33):13875-13879.

    [46] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4):297-302.

    Li MX, Chen RY. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4):297-302.

    [47]

    Astuti G, Roma-Marzio F, Peruzzi L. Traditional karyomorphological studies:can they still provide a solid basis in plant systematics?[J]. Flora Mediterranea, 2017, 27:91-98.

    [48]

    Altınordu F, Peruzzi L, Yu Y, He XJ. A tool for the analysis of chromosomes:KaryoType[J]. Taxon, 2016, 65(3):586-592.

    [49]

    Peruzzi L, Altınordu F. A proposal for a multivariate quantitative approach to infer karyological relationships among taxa[J]. Comp Cytogenet, 2014, 8(4):337-349.

    [50]

    Peruzzi L, Eroǧlu HE. Karyotype asymmetry:again, how to measure and what to measure?[J]. Comp Cytogenet, 2013, 7(1):1.

    [51]

    Paszko B. A critical review and a new proposal of karyotype asymmetry indices[J]. Plant Syst Evol, 2006, 258(1-2):39-48.

    [52]

    Peruzzi L, Leitch IJ, Caparelli KF. Chromosome diversity and evolution in Liliaceae[J]. Ann Bot, 2009, 103(3):459-475.

    [53]

    Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2):201-220.

    [54]

    Arano H. Cytological studies in subfamily Carduoideae (Compositae) of JapanⅨ.[J]. The Botanical Magazine, 1963, 76:32.

    [55]

    Huziwara Y. Karyotype analysis in some genera of Compositae.Ⅷ. Further studies on the chromosomes of Aster[J]. Am J Bot, 1962, 49(2):116-119.

    [56]

    Zarco CR. A new method for estimating karyotype asymmetry[J]. Taxon, 1986, 35(3):526-530.

    [57]

    Watanabe K, Yahara T, Denda T, Kosuge K. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae):statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information[J]. J Plant Res, 1999, 112(2):145-161.

    [58]

    Greilhuber J, Speta F. C-banded karyotypes in the Scilla hohenackeri group, S. persica, and Puschkinia (Lilia-ceae)[J]. Plant Syst Evol, 1976, 126(2):149-188.

    [59]

    Dolezel J, Bartos J. Plant DNA flow cytometry and estimation of nuclear genome size[J]. Ann Bot, 2005, 95(1):99-110.

    [60]

    Garcia S, Leitch IJ, Anadon-Rosell A, Canela MÁ, Gálvez F. Plant DNA C-values database[DB/OL].[2019-03-01]. http://data.kew.org/cvalues/.

    [61]

    Loureiro J, Suda J, Doležel J, Santos C. FLOWER:a plant DNA flow cytometry database[M]//Doležel J, Greilhuber J, Suda J, eds. Flow Cytometry with Plant Cells:Analysis of Genes, Chromosomes and Genomes. Weinheim:Wiley-VCH, 2007.

    [62]

    Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, et al. GSAD:a genome size in the Asteraceae database[J]. Cytometry A, 2011, 79(6):401-404.

    [63]

    Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides:novel nucleic acid affinity probes[J]. Proc Natl Acad Sci USA, 1981, 78(11):6633-6637.

    [64]

    Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS.In situ localization of parental genomes in a wide hybrid[J]. Ann Bot, 1989, 64(3):315-324.

    [65]

    Liu JY, She CW, Hu ZL, Xiong ZY, Liu LH, Song YC. A new chromosome fluorescence banding technique combining DAPI staining with image analysis in plants[J]. Chromosoma, 2004, 113(1):16-21.

    [66]

    Glick L, Mayrose I. ChromEvol:assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny[J]. Mol Biol Evol, 2014, 31(7):1914-1922.

    [67]

    Rice A, Šmarda P, Novosolov M, Drori M, Glick L, et al. The global biogeography of polyploid plants[J]. Nat Ecol Evol, 2019, 3(2):265-273.

    [68]

    Qiao X, Li Q, Yin H, Qi K, Li L, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants[J]. Genome Biol, 2019, 20(1):38.

    [69]

    Zhang JZ. Evolution by gene duplication:an update[J]. Trends Ecol Evol, 2003, 18(6):292-298.

    [70]

    D'Ambrosio U, Alonso-Lifante MP, Barros K, Kovařík A, Mas dXG, Garcia S. B-chrom:a database on B-chromosomes of plants, animals and fungi[J]. New Phytol, 2017, 216(3):635-642.

    [71]

    Bosch M, Simon J, López-Pujol J, Blanché C. DCDB:an updated on-line database of chromosome numbers of tribe Delphinieae (Ranunculaceae)[J]. Flora Mediterranea, 2016, 26:191-201.

    [72]

    Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. Ancestral polyploidy in seed plants and angiosperms[J]. Nature, 2011, 473(7345):97-100.

    [73] 孙航. 多学科融合、多尺度探索:植物区系地理研究的新趋势[J]. 生物多样性, 2017, 25(2):109-110.

    Sun H. Multi-disciplinary integration and multi-scale exploration:a new trend in the study of Floristic Geography[J]. Biodiversity Science, 2017, 25(2):109-110.

  • 期刊类型引用(2)

    1. 杨如梦,汪加魏,付丹,肖艺,吴南生,高岩,朱秋敏,曹嘉晟. 南酸枣花芽形态分化过程及叶片营养生理特性. 林业科学. 2024(08): 132-142 . 百度学术
    2. 张燕良. 深山含笑育苗造林技术. 现代园艺. 2022(20): 42-44 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1123
  • HTML全文浏览量:  10
  • PDF下载量:  1217
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-11-23
  • 修回日期:  2019-02-20
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-04-27

目录

    /

    返回文章
    返回