Geographical distribution and prediction of potentially suitable regions of endangered relict plant Tetraena mongolica
-
摘要: 以孑遗濒危植物四合木(Tetraena mongolica Maxim.)为对象,利用MaxEnt模型和Bioclim模型预测其在我国的潜在适生区,结合刀切法及环境变量响应曲线评估影响四合木分布的主导环境因素,运用ArcGIS软件自然间断法对其适生等级进行划分。结果显示:四合木主要分布于我国新疆、西藏、甘肃、宁夏、内蒙古、青海、陕西、山西、河北、辽宁、吉林和黑龙江等省区;在中国的适生区面积为1.49×106 km2,高适生区集中在乌海市毛乌素沙地、阿拉善左旗腾格里沙漠、阴山南部和贺兰山低山地区;2050年四合木潜在分布区将向内蒙古地区北部和东北地区西部方向缩减;两个模型的受试者工作特征曲线下的面积(AUC值)平均值均达到0.8以上,预测结果较准确;环境因子评估结果显示,影响四合木分布的主要环境因子是最冷季度的平均降水量和年温的变化范围,其次是降水量变异系数和温度季节性变化的标准差。Abstract: The endangered relict plant Tetraena mongolica Maxim was studied, with the MaxEnt and Bioclim models used to predict potentially suitable regions. We used the knife-cutting method and environmental variable response curves to evaluate the dominant environmental factors affecting the distribution of T. mongolica. Furthermore, we used the ArcGIS natural discontinuity method to divide fitness levels. Results showed that T. mongolica was mainly distributed in the Xinjiang Uygur Autonomous Region, Tibet Region, Ningxia Hui Autonomous Region, Inner Mongolia, and the Gansu, Qinghai, Shaanxi, Shanxi, Hebei, Liaoning, Jilin, and Heilongjiang provinces in China, with a total area of 1.49×106 km2. Highly suitable zones were found in the Maowusu Sandy Land of Wuhai city, the Tengger Desert in the Alxa Left Banner, the southeastern part of Yinshan Mountain, and mountains in the Helan range. The potential distribution area of T. mongolica will be reduced to north of Inner Mongolia and western Northeast China by 2050. The Area Under Curve (AUC) average values of the two models were all above 0.8, justifying their application for predicting potential areas of T. mongolica. Among the 19 environmental variables, the main factors affecting the potential distribution of T. mongolica were average precipitation of the coldest quarter and temperature annual range, followed by the coefficient of variation of precipitation seasonality and standard deviation (SD) of temperature seasonality.
-
-
[1] Kozak KH, Graham CH, Wiens JJ. Integrating GIS-based environmental data into evolutionary biology[J]. Trends Ecol Evol, 2008, 23(3):141-148.
[2] IPCC. Climate Change 2013:The Physical Science Basis Working group I to the Fifth Assessment Report[M/OL]. Cambridge:Cambridge University Press, 2013.
[3] 邹旭, 彭冶, 王璐, 李垚, 张往祥, 刘雪. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5):676-686. Zou X, Peng Y, Wang L, Li Y, Zhang WX, Liu X. Impact of climate change on the distribution pattern of Malus baccata (L.) Borkh. in China since the Last Glacial Maximum[J]. Plant Science Journal, 2018, 36(5):676-686.
[4] Solomon S, Qin D, Manning M, et al. Climate Change 2007:The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2007:18.
[5] 刘文胜, 游简舲, 曾文斌, 齐丹卉. 气候变化下青藏苔草地理分布的预测[J]. 中国草地学报, 2018, 40(5):43-49. Liu WS, You JL, Zeng WB, Qi DH. Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model[J]. Chinese Journal of Grassland, 2018, 40(5):43-49.
[6] 乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学, 2013, 43(11):915-927. Qiao HJ, Hu JH, Huang JH. Theoretical basis, future directions, and challenges for ecological niche models[J]. Scientia Sinica Vitae, 2013, 43(11):915-927.
[7] 朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98. Zhu GP, Liu GQ, Pu WJ, Gao YB. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
[8] 徐家文, 史家浩, 任强, 李绍勤. 基于BIOCLIM模型的扶桑绵粉蚧在中国的适生性分析[J]. 湖北农业科学, 2015, 54(11):2631-2633. Xu JW, Shi JH, Ren Q, Li SQ. Potential distribution of Phenacoccus solenopsis in China by the BIOCLIM model[J]. Hubei Agricultural Sciences, 2015, 54(11):2631-2633.
[9] 艾科拜尔·木哈塔尔, 热木图拉·阿卜杜克热木, 马合木提·哈力克. 基于生态位模型的艾比湖国家级自然保护区马鹿生境评价[J]. 生态学报, 2017, 37(11):3919-3925. Akbar Muhtar, Rahmutulla Abdukerim, Mahmut Halik. Assessing habitat suitability for Cervuselaphus in the Ebinur Lake National Nature Reserve[J]. Acta Ecologica Sinica, 2017, 37(11):3919-3925.
[10] 付贵全, 徐先英, 马剑平, 徐梦莎, 刘江, 丁爱强. 基于MaxEnt下梭梭潜在地理分布对水热条件的响应[J]. 草业科学, 2016, 33(11):2173-2179. Fu GQ, Xu XY, Ma JP, Xu MS, Liu J, Ding AQ. Responses of Haloxylon ammodendron potential geographical distribution to the hydrothermal conditions under MaxEnt model[J]. Pratacultural Science, 2016, 33(11):2173-2179.
[11] 王运生. 生态位模型在外来入侵物种风险评估中的应用研究[D]. 湖南:湖南农业大学, 2007. [12] 杨持, 智颖飙, 征荣. 四合木种群的生态适应性[J]. 生态学报, 2006, 26(1):91-96. Yang C, Zhi YB, Zheng R. An analysis of ecological adaptability on Tetraena mongolica Maxim. populations[J]. Acta Ecologica Sinica, 2006, 26(1):91-96.
[13] 甄江红, 陈德喜, 玉山, 刘果厚. 濒危植物四合木生境适宜性变化分析[J]. 干旱区资源与环境, 2011, 25(7):188-195. Zheng JH, Chen DX, Yu S, Liu GH. Habitat suitability change for endangered plant Tetraena mongolica Maxim.[J]. Journal of Arid Land Resources and Environmen, 2011, 25(7):188-195.
[14] 张云飞, 杨持, 陈家宽. 四合木(Tetraena mongolica)分布区景观结构时空变化分析[J]. 武汉植物学研究, 2001, 19(1):25-30. Zhang YF, Yang C, Cheng JK. Spatial-temporal change of landscape structure in the distribution region of Tetraena mongolica[J]. Journal of Wuhan Botanical Research, 2001, 19(1):25-30.
[15] 甄江红. 濒危植物四合木生境的景观动态与适宜性评价研究[D]. 呼和浩特:内蒙古农业大学, 2008. [16] Wang WF, Hao WD, Bian ZF, Lei SG, Wang XS, Sang SX, Xu SC. Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China:A geochemical perspective[J]. Int J Coal Geol, 2014, 132(1):94-102.
[17] Wang GL, Lin QQ, Xu YN. Tetraena mongolica Maxim. can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems[J]. Phytochemistry, 2007, 68(15):2112-2117.
[18] Weselake RJ. Industrial Oil Crops[M]. New York:AOCS Press, 2016:413-434.
[19] Lu KQ, Xie G, Li M, Li JF, Trivedi A, et al. Dataset of pollen morphological traits of 56 dominant species among desert vegetation in the eastern arid central Asia[J]. Data in Brief, 2018, 18:1022-1046.
[20] Lu KQ, Gan Xie, Li M, Li JF, Anjali Trivedi, David K, et al. Pollen spectrum a cornerstone for tracing the evolution of the eastern central asian desert[J]. Quaternary Sci Rev, 2018, 186:111-122.
[21] Wei XB, Xue JQ, Wang SL, Xue YQ, Lin H, Shao XF, et al. Fatty acid analysis in the seeds of 50Paeonia ostii individuals from the same population[J]. J Integr Agr, 2018, 17(8):1758-1767.
[22] Lauterbach M, van der Merwe PW, Keßler L, Pirie MD, Bellstedt DU, Kadereit G. Evolution of leaf anatomy in arid environments:A case study in southern African Tetraena and Roepera (Zygophyllaceae)[J]. Mol Phylogenet Evol, 2016, 97:129-144.
[23] 王光明. 近二十年人为干扰对乌海市四合木景观格局影响研究[D]. 呼和浩特:内蒙古大学, 2012. [24] Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiov Th, 2004, 3(2):319-322.
[25] 张颖, 李君, 林蔚, 强胜. 基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J]. 应用生态学报, 2011, 22(11):2970-2976. Zhang Y, Li J, Lin W, Qiang S. Prediction of potentialt distriburion area of Erigeron philadelphicus in China based on MaxEnt model[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2970-2976.
[26] 张路. MAXENT最大熵模型在预测物种潜在分布范围方面的应用[J]. 生物学通报, 2015, 50(11):9-12. Zhang L. Application of the MAXENT maximumentropy model in predicting the potential distribution of species[J]. Bulletin of Biology, 2015, 50(11):9-12.
[27] 李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153-164. Li X, Li Y, Fang YM. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model[J]. Scientia Silvae Sinicae, 2018, 54(8):153-164.
[28] 王茹琳, 高晓清, 王闫利, 姜淦, 沈沾红, 林姗. 基于MaxEnt的非洲橘硬蓟马在全球及中国的潜在分布区预测[J]. 中国农学通报, 2014, 30(28):315-320. Wang RL, Gao XQ, Wang YL, Jiang G, Shen ZH, Lin S. Potential distribution of Scirtothrips aurantii in China and the world predicted by MaxEnt[J]. China Agricultural Science Bulletin, 2014, 30(28):315-320.
[29] 陈铁柱, 刘建辉, 周先建, 张美, 辜彬, 廖述吉. 基于MaxEnt和ArcGIS预测合欢潜在分布及适宜性评价[J]. 北方园艺, 2017, 41(16):191-195. Chen TZ, Liu JX, Zhou XJ, Zhang M, Gu B, Liao SJ. Potential distribution prediction and suitability evaluation of Albizia julibrissin Durazz. based on maxent modeling and GIS[J]. Northern Horticulture, 2017, 41(16):191-195.
[30] 陈林. 红火蚁(Solenopsis invicta)在我国的潜在分布研究[D]. 北京:中国农业科学院, 2007. [31] 洪波. 基于GIS的有害生物空间分布预测系统研究[D]. 杨凌:西北农林科技大学, 2009. [32] 宋花玲, 贺佳, 虞慧婷, 李玲. 应用ROC曲线下面积对两相关诊断试验进行评价和比较[J]. 第二军医大学学报, 2006, 27(5):562-563. Song HL, He J, Yu HT, Li L. Area under ROC curves in evaluation and comparison of two correlated diagnostic tests[J]. Academic Journal of Second Military Medical University, 2006, 27(5):562-563.
[33] 王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
[34] Hewitt GM. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405:907-913.
[35] 徐庆, 刘世荣, 臧润国, 郭泉水, 郝玉光. 中国特有植物四合木种群的生殖生态特征:种群生殖值及生殖分配研究[J]. 林业科学, 2001, 37(2):36-41. Xu Q, Liu SR, Zang RG, Guo QS, Hao YG. The characteristics of reproductive ecology of endemic species Tetraena mongolica population in China[J]. Scientia Silvae Sinicae, 2001, 37(2):36-41.
[36] 吴建国. 气候变化对我国7种植物潜在分布的影响[J]. 广西植物, 2011, 31(5):595-607, 694. Wu JG. The potential effects of climate change on the distributions of 7 plants in China[J]. Guihaia, 2011, 31(5):595-607, 694.
[37] Mckenney DW, Pedlar JH, Lawrence K, Campbell K. Potential impacts of climate change on the distribution of North American trees[J]. BioScience, 2007, 57:939-948.
[38] Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320:1768-1771.
[39] Engler R, Randin CF, Thuiller W, Dullinger S. 21st century climate change threatens mountain flora unequally across Europe[J]. Global Change Biol, 2011, 17(7):2330-2341.
[40] 张兴旺, 李垚, 谢艳萍, 包先明, 方炎明. 气候变化对黄山花楸潜在地理分布的影响[J]. 植物资源与环境学报, 2018, 27(4):31-41. Zhang XW, Li Y, Xie YP, Bao XM, Fang YM. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. Journal of Plant Resources and Environment, 2018, 27(4):31-41.
[41] 孙平. 四合木(Tetraena mongolica)保护遗传学研究及三种西鄂尔多斯濒危植物微卫星标记的筛选[D]. 合肥:安徽大学, 2018. [42] 杨超. 蒙古高原和青藏高原针茅属植物适宜分布区及其与气候因子的相关性[D]. 呼和浩特:内蒙古大学, 2016. [43] 刘超, 霍宏亮, 田路明, 董星光, 齐丹, 张莹, 等. 基于MaxEnt模型不同气候变化情景下的豆梨潜在地理分布[J].应用生态学报, 2018, 29(11):3696-3704. Liu C, Huo HL, Tian LM, Dong XG, Qi D, Zhang Y, et al. Potential geographical distribution of Pyrus calleryana under different climate change scenarios based on the MaxEnt model[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3696-3704.
-
期刊类型引用(15)
1. 宋晗铭,王昊天,林泽花,郑寿松,周志恩,龚粤宁,刘志发,李友余,齐硕,王英永. 广东省8种两栖爬行动物新记录. 动物学杂志. 2024(05): 658-686 . 百度学术
2. 徐军亮,候佳玉,毋彤,翟乐鑫,罗鹏飞,卫苗,章异平. 4个环孔材树种木质部年内生长动态及与气候因子的关系. 浙江农林大学学报. 2024(06): 1105-1113 . 百度学术
3. 蒙真铖,张建春,李春,高梅,张光勇,岳建伟. 云南省番荔枝科资源植物多样性研究. 热带农业科学. 2023(01): 25-30 . 百度学术
4. 黄佳欣,杜彦君,李东海,龙文兴,汪继超,汤炎非. 海南潜在世界自然遗产地的突出普遍价值初探. 广西植物. 2023(09): 1678-1687 . 百度学术
5. 黄锐洲,许涵,刘家辉,马海宾,唐光大. 广东省雷州半岛风水林斑块的植物多样性. 陆地生态系统与保护学报. 2023(04): 44-53 . 百度学术
6. 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化. 生物多样性. 2023(12): 38-56 . 百度学术
7. 孟宏虎,宋以刚. 东南亚生物地理格局:回溯与思考. 生物多样性. 2023(12): 57-77 . 百度学术
8. 肖丽芳,罗敏贤,陈绪辉,杨皖乔,方镇福,郑世群. 福建极小种群植物白果蒲桃生境群落特征和物种多样性. 东北林业大学学报. 2022(05): 26-31 . 百度学术
9. 杨聪,石明,高军,杜凡,戴蓉. 老君山国家级自然保护区小桥沟片区森林种子植物区系分析. 西南林业大学学报(自然科学). 2021(02): 68-75 . 百度学术
10. 曹关龙,邹典洋,周润,李朗,李捷. 中国樟科厚壳桂属系统发育与物种多样性研究. 植物科学学报. 2021(04): 349-357 . 本站查看
11. 朱华,Peter Ashton. 中国热带-亚热带常绿阔叶林群落交错区. 科学通报. 2021(Z2): 3732-3743 . 百度学术
12. 蔡艳琨,朱坤,魏俊,吴群,卢雨田,陈文德. 黑竹沟国家级自然保护区种子植物区系地理特征分析. 生物资源. 2021(06): 625-632 . 百度学术
13. Peter Ashton,Hua Zhu. The tropical-subtropical evergreen forest transition in East Asia:An exploration. Plant Diversity. 2020(04): 255-280 . 必应学术
14. 白龙,段博文,陈曦,王正文,于景华,曹伟,吕林有,周婵,曲波,马凤江. 辽宁省西部低山丘陵区草地类型分布及植物区系特征. 草地学报. 2020(06): 1726-1735 . 百度学术
15. 黄锐洲,韦雪芬,黄燕,李焜钊,唐光大,陈瑜. 广东番荔枝科植物区系地理研究. 林业与环境科学. 2019(06): 80-90 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1125
- HTML全文浏览量: 36
- PDF下载量: 631
- 被引次数: 19