高级检索+

中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究

廖卫芳, 赵盛英, 付春华, 刘志国, 缪礼鸿, 赵春芳, 余龙江

廖卫芳, 赵盛英, 付春华, 刘志国, 缪礼鸿, 赵春芳, 余龙江. 中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究[J]. 植物科学学报, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367
引用本文: 廖卫芳, 赵盛英, 付春华, 刘志国, 缪礼鸿, 赵春芳, 余龙江. 中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究[J]. 植物科学学报, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367
Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367
Citation: Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. DOI: 10.11913/PSJ.2095-0837.2019.30367
廖卫芳, 赵盛英, 付春华, 刘志国, 缪礼鸿, 赵春芳, 余龙江. 中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究[J]. 植物科学学报, 2019, 37(3): 367-373. CSTR: 32231.14.PSJ.2095-0837.2019.30367
引用本文: 廖卫芳, 赵盛英, 付春华, 刘志国, 缪礼鸿, 赵春芳, 余龙江. 中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究[J]. 植物科学学报, 2019, 37(3): 367-373. CSTR: 32231.14.PSJ.2095-0837.2019.30367
Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. CSTR: 32231.14.PSJ.2095-0837.2019.30367
Citation: Liao Wei-Fang, Zhao Sheng-Ying, Fu Chun-Hua, Liu Zhi-Guo, Miao Li-Hong, Zhao Chun-Fang, Yu Long-Jiang. Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis[J]. Plant Science Journal, 2019, 37(3): 367-373. CSTR: 32231.14.PSJ.2095-0837.2019.30367

中国红豆杉羟化酶基因TcCYP725A22的克隆与功能研究

基金项目: 

高等学校博士学科点专项科研基金(20120142130009);华中科技大学校自主创新基金(2013TS079)。

详细信息
    作者简介:

    廖卫芳(1989-),女,博士,讲师,研究方向为植物次生代谢与调控(E-mail:leesalwf89@126.com)。

    通讯作者:

    廖卫芳,E-mail:leesalwf89@126.mail.hust.edu.cn

    余龙江,E-mail:yulongjiang@mail.hust.edu.cn

  • 中图分类号: Q943.1

Cloning and functional analysis of hydroxylase gene TcCYP725A22 from Taxus wallichiana var.chinensis

Funds: 

This work was supported by grants from the Specialized Research Fund for the Doctoral Program of Higher Education (2012142130009) and Independent Innovation Fund Project of Huazhong University of Science and Technology (2013TS079).

  • 摘要: 基于中国红豆杉(Taxus wallichiana var.chinensis(Pilger) Florin)转录组序列,从中扩增到1个新的P450羟化酶基因TcCYP725A22,并对其进行了克隆、表达及功能分析。生物信息学分析结果显示:该基因编码区长1500 bp,共编码499个氨基酸;编码蛋白无信号肽,包含1个跨膜区,具有催化活性中心结构域。进一步将该基因在酿酒酵母WAT11中进行异源表达功能研究,蛋白质免疫印迹(Western blot)实验结果表明,目的蛋白TcCYP725A22可在WAT11中成功表达;液相色谱-质谱联用(LC-MS)分析结果显示,羟化酶TcCYP725A22对底物紫杉素表现出催化活性。依据质谱结果及反应底物紫杉素的分子结构,判断其催化产物可能为添加了2个羟基的紫杉烷新衍生物。
    Abstract: Based on our previous transcriptome analysis, a new P450 hydroxylase gene was identified and named TcCYP725A22 according to homological analysis. The TcCYP725A22 cDNA was 1500 bp in length and encoded 499 amino acids. Bioinformatics predicted that the TcCYP725A22 protein contained a transmembrane region and catalytically active domains but no signal peptide. Functional analysis of TcCYP725A22 was carried out in Saccharomyces cerevisiae strain WAT11. Western blotting results indicated that the target protein was expressed successfully in WAT11. Furthermore, LC-MS analysis showed that TcCYP725A22 expressed in yeast was able to transform taxusin to its hydroxyl derivative, indicating that it had catalytic activity.
  • [1]

    Sun NK, Kohli A, Huang SL, Chang TC, Chao CCK. Androgen receptor transcriptional activity and chromatin modifications on the ABCB1/MDR gene are critical for taxol resistance in ovarian cancer cells[J]. J Cell Physiol, 2019, 234(6):8760-8775.

    [2]

    Ketchum RE, Wherland L, Croteau R. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures[J]. Plant Cell Rep, 2007, 26(7):1025-1033.

    [3]

    Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O. Combinatorial biosynthesis of medicinal plant secondary metabolites[J]. Biomol Eng, 2006, 23(6):265-279.

    [4]

    Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, et al. Production of the anticancer drug taxol in Taxus baccata suspension cultures:a review[J]. Process Biochem, 2011, 46(1):23-34.

    [5]

    Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran[J]. FEMS Microbiol Lett, 2012, 328(2):122-129.

    [6]

    Yang N, Pan X, Chen G, Sarsaiya S, Yu J, et al. Fermentation engineering for enhanced paclitaxel production by Taxus media endophytic fungus MF-5(Alternaria sp.)[J]. J Biobased Mater Bio, 2018, 12(6):545-550.

    [7]

    Tije AJ, Verweij J, Loos WJ, Sparreboom A. Pharmacological effects of formulation vehicles:implications for cancer chemotherapy[J]. Clin Pharmac Okinet, 2003, 42(7):665-685.

    [8]

    Matoba H, Watanabe T, Nagatomo M, Inoue M. Convergent synthesis of taxol skeleton via decarbonylative radical coupling reaction[J]. Org Lett, 2018, 20(23):7554-7557.

    [9]

    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. Production of the antimalarial drug precursor artemi-sinic acid in engineered yeast[J]. Nature, 2006, 440(7086):940-943.

    [10]

    Yan X, Fan Y, Wei W, Wang P, Liu QF, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Res, 2014, 24(6):770-773.

    [11]

    Awasthi D, Wang L, Rhee MS, Wang Q, Chauliac D, et al. Metabolic engineering of Bacillus subtilis for production of D-lactic acid[J]. Biotech Bioeng, 2018, 115(2):453-463.

    [12]

    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000):70-74.

    [13]

    Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotech, 2015, 33(4):377-383.

    [14]

    Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanop-oulos G, et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli[J]. Proc Natl Acad Sci USA, 2016, 113(12):3209-3214.

    [15]

    Liao WF, Zhao SY, Zhang M, Dong KG, Chen Y, et al. Transcriptome assembly and systematic identification of novel cytochrome P450s in Taxus chinensis[J]. Front Plant Sci, 2017, 8:1468.

    [16]

    Zhang CH, Mei XG, Liu L, Yu LJ. Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis[J]. Biotechnol Lett, 2000, 22(19):1561-1564.

    [17]

    Roberts SC. Production and engineering of terpenoids in plant cell culture[J]. Nat Chem Biol, 2007, 3(7):387-395.

    [18]

    Howat S, Park B, Oh IS, Jin YW, Lee EK, et al. Paclita-xel:biosynthesis, production and future prospects[J]. New Biotechnol, 2014, 31(3):242-245.

    [19]

    Jennewein S, Long RM, Williams RM, Croteau R. Cytochrome P450 taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis[J]. Chem Biol, 2004, 11(3):379-387.

    [20]

    Schoendorf A, Rithner CD, Williams RM, Croteau R. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase c DNA from Taxus and functional expression in yeast[J]. Proc Natl Acad Sci USA, 2001, 98(4):1501-1506.

    [21]

    Jennewein S, Rithner CD, Williams RM, Croteau R. Taxol biosynthesis:taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Proc Natl Acad Sci USA, 2001, 98(24):13595-13600.

    [22]

    Chau M, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in taxol biosynthesis[J]. Arch Biochem Biophys, 2004, 427(1):48-57.

    [23]

    Chau M, Jennewein S, Walker K, Croteau R. Taxol biosynthesis:molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase[J]. Chem Biol, 2004, 11(5):663-672.

    [24] 陈清浦, 廖卫芳, 付春华, 赵春芳, 余龙江. 紫杉醇生物合成途径中羟化酶的研究进展[J]. 生物工程学报, 2016, 32(5):554-564.

    Chen QP, Liao WF, Fu CH, Zhao CF, Yu LJ. Research progress in hydroxylase in taxol biosynthetic pathway[J]. Chinese Journal of Biotechnology, 2016, 32(5):554-564.

    [25]

    Eisenreich W, Menhard B, Lee MS. Multiple oxygenase reactions in the biosynthesis of taxoids[J]. J Am Chem Soc, 1998, 120(37):9694-9695.

    [26]

    Walker K, Schoendorf A, Croteau R. Molecular cloning of ataxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli[J]. Arch Biochem Biophys, 2000, 374(2):371-380.

    [27]

    Walker K, Croteau R. Taxol biosynthesis:molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli[J]. Proc Natl Acad Sci USA, 2000, 97(25):13591-13596.

  • 期刊类型引用(15)

    1. 宋晗铭,王昊天,林泽花,郑寿松,周志恩,龚粤宁,刘志发,李友余,齐硕,王英永. 广东省8种两栖爬行动物新记录. 动物学杂志. 2024(05): 658-686 . 百度学术
    2. 徐军亮,候佳玉,毋彤,翟乐鑫,罗鹏飞,卫苗,章异平. 4个环孔材树种木质部年内生长动态及与气候因子的关系. 浙江农林大学学报. 2024(06): 1105-1113 . 百度学术
    3. 蒙真铖,张建春,李春,高梅,张光勇,岳建伟. 云南省番荔枝科资源植物多样性研究. 热带农业科学. 2023(01): 25-30 . 百度学术
    4. 黄佳欣,杜彦君,李东海,龙文兴,汪继超,汤炎非. 海南潜在世界自然遗产地的突出普遍价值初探. 广西植物. 2023(09): 1678-1687 . 百度学术
    5. 黄锐洲,许涵,刘家辉,马海宾,唐光大. 广东省雷州半岛风水林斑块的植物多样性. 陆地生态系统与保护学报. 2023(04): 44-53 . 百度学术
    6. 朱华. 地质事件和季风气候影响了云南植物区系和植被的演化. 生物多样性. 2023(12): 38-56 . 百度学术
    7. 孟宏虎,宋以刚. 东南亚生物地理格局:回溯与思考. 生物多样性. 2023(12): 57-77 . 百度学术
    8. 肖丽芳,罗敏贤,陈绪辉,杨皖乔,方镇福,郑世群. 福建极小种群植物白果蒲桃生境群落特征和物种多样性. 东北林业大学学报. 2022(05): 26-31 . 百度学术
    9. 杨聪,石明,高军,杜凡,戴蓉. 老君山国家级自然保护区小桥沟片区森林种子植物区系分析. 西南林业大学学报(自然科学). 2021(02): 68-75 . 百度学术
    10. 曹关龙,邹典洋,周润,李朗,李捷. 中国樟科厚壳桂属系统发育与物种多样性研究. 植物科学学报. 2021(04): 349-357 . 本站查看
    11. 朱华,Peter Ashton. 中国热带-亚热带常绿阔叶林群落交错区. 科学通报. 2021(Z2): 3732-3743 . 百度学术
    12. 蔡艳琨,朱坤,魏俊,吴群,卢雨田,陈文德. 黑竹沟国家级自然保护区种子植物区系地理特征分析. 生物资源. 2021(06): 625-632 . 百度学术
    13. Peter Ashton,Hua Zhu. The tropical-subtropical evergreen forest transition in East Asia:An exploration. Plant Diversity. 2020(04): 255-280 . 必应学术
    14. 白龙,段博文,陈曦,王正文,于景华,曹伟,吕林有,周婵,曲波,马凤江. 辽宁省西部低山丘陵区草地类型分布及植物区系特征. 草地学报. 2020(06): 1726-1735 . 百度学术
    15. 黄锐洲,韦雪芬,黄燕,李焜钊,唐光大,陈瑜. 广东番荔枝科植物区系地理研究. 林业与环境科学. 2019(06): 80-90 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  694
  • HTML全文浏览量:  1
  • PDF下载量:  573
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-12-09
  • 修回日期:  2019-03-03
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-06-27

目录

    /

    返回文章
    返回