高级检索+

杨品种‘84K’光合生理的不同过程对干旱和复水的响应

刘文鑫, 万贤崇

刘文鑫, 万贤崇. 杨品种‘84K’光合生理的不同过程对干旱和复水的响应[J]. 植物科学学报, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
引用本文: 刘文鑫, 万贤崇. 杨品种‘84K’光合生理的不同过程对干旱和复水的响应[J]. 植物科学学报, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
Citation: Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. DOI: 10.11913/PSJ.2095-0837.2019.40530
刘文鑫, 万贤崇. 杨品种‘84K’光合生理的不同过程对干旱和复水的响应[J]. 植物科学学报, 2019, 37(4): 530-539. CSTR: 32231.14.PSJ.2095-0837.2019.40530
引用本文: 刘文鑫, 万贤崇. 杨品种‘84K’光合生理的不同过程对干旱和复水的响应[J]. 植物科学学报, 2019, 37(4): 530-539. CSTR: 32231.14.PSJ.2095-0837.2019.40530
Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. CSTR: 32231.14.PSJ.2095-0837.2019.40530
Citation: Liu Wen-Xin, Wan Xian-Chong. Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration[J]. Plant Science Journal, 2019, 37(4): 530-539. CSTR: 32231.14.PSJ.2095-0837.2019.40530

杨品种‘84K’光合生理的不同过程对干旱和复水的响应

基金项目: 

中国林业科学研究院林业新技术研究所中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2018SZ019);国家自然科学基金项目(31270648)。

详细信息
    作者简介:

    刘文鑫(1990-),女,博士研究生,研究方向为植物生理生态(E-mail:liuwenxin0420@163.com)。

    通讯作者:

    万贤崇,E-mail:wxc@caf.ac.cn

  • 中图分类号: Q945.17

Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration

Funds: 

This work was supported by grants from the Basic Research Foundation from the Institute of New Forestry Technology from Chinese Academy of Forestry (CAFYBB2018SZ019) and National Natural Science Foundation of China (31270648).

  • 摘要: 以杨品种‘84K’(Populus alba×P.glandulosa)为材料,对其干旱胁迫及复水后光合生理特性的变化进行了研究。结果显示,在干旱胁迫及复水过程中,杨品种‘84K’光合作用相关的主要反应对此过程响应不同步。在干旱胁迫过程中,‘84K’的羧化反应速度、气孔导度(Gs)、叶肉导度(Gm)均显著下降,但前者下降幅度小于后两者,此时的光合作用主要受GsGm制约。复水之后,Gm很快得到恢复,而光化学淬灭过程、羧化反应速度均没有恢复到对照水平,此时是光化学淬灭和(或)羧化反应制约了‘84K’的碳固定及光合作用。
    Abstract: Populus alba×P. glandulosa (‘84K’) was used to study changes in photosynthetic physiological characteristics after drought stress and rehydration. Results showed that the main photosynthetic processes of ‘84K’ were not synchronous during drought stress and rehydration. During drought, the carboxylation rate, stomatal conductance (Gs), and mesophyll conductance (Gm) of ‘84K’ declined significantly, but the former decreased less than the latter two. Thus, at this time, photosynthesis was mainly restricted by Gs and Gm. After rehydration, Gm recovered rapidly; however, the photochemical quenching process and carboxylation rate did not recover to the control level, which may restrict the carbon fixation and photosynthesis of ‘84K’.
  • [1]

    Woodruff DR, Meinzer FC. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer[J]. Plant Cell Environ, 2011, 34(11):1920-1930.

    [2] 郭文霞, 赵志江, 郑娇, 李俊清. 不同土壤水分条件下油松幼苗光合作用的气孔和非气孔限制:试验和模拟结果[J]. 林业科学, 2017, 53(7):18-36.

    Guo WX, Zhao ZJ, Zhen J, Li JQ. Stomatal and non-stomatal limitation to photosynthesis in Pinus tabulaeformis seedling under different soil water conditions:experimental and simulation results[J]. Scientia Silvae Sinicae, 2017, 53(7):18-36.

    [3]

    McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiol, 2011, 155(3):1051-1059.

    [4]

    Aranda I, Gil-Pelegrín E, Gascó A, Guevara MA, Cano JF, et al. Drought response in forest trees:from the species to the gene[M]//Ricardo A, ed. Plant Responses to Drought Stress:From Morphological to Molecular Features. Berlin:Springer-Verlag Berlin Heidelberg, 2012.

    [5]

    Flexas J, Barón M, Bota J, Ducruet J-M, Gallé A, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110(V. berlandieri×V. rupestris)[J]. J Exp Bot, 2009, 60(8):2361-2377.

    [6]

    Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytol, 2007, 175(1):81-93.

    [7]

    Flexas J, Escalona JM, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines[J]. Plant Cell Environ, 2010, 22(1):39-48.

    [8]

    Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J].Nature, 1999, 401(6756):914-917.

    [9]

    Galle A, Florez-Sarasa I, Tomas M, Pou A, Medrano H,et al. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris):acclimation or limitation?[J]. J Exp Bot, 2009, 60(8):2379-2390.

    [10]

    Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, et al. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum:anatomical adaptations in relation to gas exchange parameters[J]. Plant Cell Environ, 2013, 36(5):920-935.

    [11]

    Xiong D, Flexas J, Yu T, Peng S, Huang J. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza[J].New Phytol, 2017, 213(2):572-583.

    [12]

    Wang X, Wang W, Huang J, Peng S, Xiong D. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa)[J]. Physiol Plantarum, 2018, 163(1):45-58.

    [13] 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳. 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响[J]. 植物科学学报, 2016, 34(6):909-919.

    Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF. Impact of leaf morphological and anatomical traits on mesophyll conductance and leaf hydraulic conductance in mangrove plants[J]. Plant Science Journal,2016, 34(6):909-919.

    [14]

    Cano FJ, Sanchez-Gomez D, Rodriguez-Calcerrada J, Warren CR, Gil L, et al. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers[J]. Plant Cell Environ, 2013, 36(11):1961-1980.

    [15]

    Campos H, Trejo C, Peña-Valdivia CB, García-Nava R, Conde-Martínez FV, et al. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering:Delayed restoration of photosynthesis during recovery[J]. Environ Exp Bot, 2014, 98:56-64.

    [16] 李科友, 樊军锋, 赵忠, 周永学, 高建社. 84K杨再生和遗传转化体系的优化[J]. 西北农林科技大学学报(自然科学版), 2007, 35(7):90-96.

    Li KY, Fan JF, Zhao Z, Zhou YX, Gao JS. Prioritization of the system of regeneration and genetictrans formation of populus 84K[J]. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(7):90-96.

    [17] 王树耀, 田宗城, 王云, 周芳.OsNHX1基因转化84K杨的研究[J]. 湖南文理学院学报(自然科学版), 2005, 17(1):60-63.

    Wang SY, Tian ZC, Wang Y, Zhou F. Transfromation of poplar 84K withOsNHX1 gene[J]. Journal of Hunan University of Arts and Science(Natural Science Edition), 2005, 17(1):60-63.

    [18]

    De Souza TC, Magalhães PC, de Castro EM, de Albuquerque PEP, Marabesi MA. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance[J]. Acta Physiol Plant, 2013, 35(2):515-527.

    [19]

    Harley PC, Loreto F, Di Marco G. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4):1429-1436.

    [20]

    Bernacchi CJ, Portis AR, Nakano H, Von CS, Long SP. Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo[J]. Plant Physiol, 2002, 130(4):1992-1998.

    [21]

    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant Cell Environ, 2007, 30(9):1035-1040.

    [22]

    Farquhar GD, Von CS, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90.

    [23]

    Flexas J, Díazespejo A, Berry JA, Cifre J, Galmé S, et al. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems:quantification and its effects in photosynthesis parameterization[J]. J Exp Bot, 2007, 58(6):1533-1543.

    [24] 高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社, 2006.
    [25] 吕扬, 刘廷玺, 闫雪, 段利民, 张圣微, 等. 科尔沁沙丘-草甸相间地区黄柳和小叶锦鸡儿光合速率对光照强度和CO2浓度的响应[J]. 生态学杂志, 2016, 35(12):3157-3164.

    Lü Y, Liu TX, Yan X, Duan LM, Zhang SW, et al. Response of photosynthetic rate of Salix gordejevii and Caragana microphylla to light intensity and CO2 concentration in the dune-meadow transitional area of Horqin sandy land[J]. Chinese Journal of Ecology, 2016, 35(12):3157-3164.

    [26]

    Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biol, 2004, 6:269-279.

    [27]

    Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J]. Physiol plantarum, 2006, 127(3):343-352.

    [28]

    Ennahli S, Earl HJ. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress[J]. Crop Sci, 2005, 45(6):2374-2382.

    [29]

    Hanson DT, Green LE, Pockman WT. Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus[J]. Front in Plant Sci, 2013, 4(365):1-9.

    [30]

    Daszkowska-Golec A, Szarejko I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions[J]. Front in Plant Sci, 2013, 4(138):1-15.

    [31]

    Bota J, Medrano H, Flexas J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress?[J] New Phytol, 2004, 162(3):671-681.

    [32]

    Song Y, Ci D, Tian M, Zhang D, Min T. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses[J]. Plant Mol Biol, 2014, 86(1-2):139-156.

    [33]

    Zhang S, Chen F, Peng S, Ma W, Korpelainen H, et al. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress[J]. Proteomics, 2010, 10(14):2661-2677.

    [34]

    De Souza CR, Maroco JP, dos Santos TP, Rodrigues ML, Lopes C, et al.Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars[J]. Agr Ecosyst Environ, 2005, 106(2-3):261-274.

    [35]

    Zhou Y, Lam HM, Zhang J. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice[J]. J Exp Bot, 2007, 58(5):1207-1217.

    [36]

    Vincent D, Ergül A, Bohlman MC, Tattersall EAR, Tillett RL. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity[J]. J Exp Bot, 2007, 58(7):1873-1892.

    [37]

    Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, et al. CO2 assimilation, ribulose-1, 5-bisphosphate carboxy-lase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply[J]. BMC Plant Biol, 2009, 9(1):43.

    [38]

    Pastenes C, Pimentel P, Lillo J. Leaf movements and photoinhibition in relation to water stress in field-grown beans[J]. J Exp Bot, 2004, 56(411):425-433.

    [39]

    Kitajima K, Hogan KP. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light[J]. Plant Cell Environ, 2003, 26(6):857-865.

    [40]

    Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, et al. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species:quantitative limitations ad scaling up by models[J]. J Exp Bot, 2013, 64(8):2269-2281.

    [41]

    Veromann-Jurgenson LL, Tosens T, Laanisto L, Niinemets U. Extremely thick cell walls and low mesophyll conduc-tance:welcome to the world of ancient living![J]. J Exp Bot, 2017, 68(7):1639-1653.

  • 期刊类型引用(2)

    1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
    2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  569
  • HTML全文浏览量:  0
  • PDF下载量:  539
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-01-20
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-08-27

目录

    /

    返回文章
    返回