高级检索+

鸢尾属植物的传粉者吸引及异交策略

张伟, 何承斌, 龚燕兵

张伟, 何承斌, 龚燕兵. 鸢尾属植物的传粉者吸引及异交策略[J]. 植物科学学报, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
引用本文: 张伟, 何承斌, 龚燕兵. 鸢尾属植物的传粉者吸引及异交策略[J]. 植物科学学报, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
Citation: Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. DOI: 10.11913/PSJ.2095-0837.2019.50672
张伟, 何承斌, 龚燕兵. 鸢尾属植物的传粉者吸引及异交策略[J]. 植物科学学报, 2019, 37(5): 672-681. CSTR: 32231.14.PSJ.2095-0837.2019.50672
引用本文: 张伟, 何承斌, 龚燕兵. 鸢尾属植物的传粉者吸引及异交策略[J]. 植物科学学报, 2019, 37(5): 672-681. CSTR: 32231.14.PSJ.2095-0837.2019.50672
Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. CSTR: 32231.14.PSJ.2095-0837.2019.50672
Citation: Zhang Wei, He Cheng-Bin, Gong Yan-Bing. Pollinator attraction and outcrossing strategies in Iris[J]. Plant Science Journal, 2019, 37(5): 672-681. CSTR: 32231.14.PSJ.2095-0837.2019.50672

鸢尾属植物的传粉者吸引及异交策略

基金项目: 

国家自然科学基金项目(31670228)。

详细信息
    作者简介:

    张伟(1993-),女,硕士研究生,研究方向为传粉生物学(E-mail:wei_zhang@whu.edu.cn)。

    通讯作者:

    龚燕兵,E-mail:ybgong@whu.edu.cn

  • 中图分类号: Q944.43

Pollinator attraction and outcrossing strategies in Iris

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31670228).

  • 摘要: 已知鸢尾属(Iris)植物约有280种且花部特征多变,具有较高的科研和观赏价值。尽管该属植物具备一定的克隆和自交繁殖能力,但传粉者介导的异交仍在其物种和遗传多样性的维持中发挥重要作用,然而目前仍缺乏对该属植物传粉者吸引及异交策略的系统性总结。本文首先简述了鸢尾属植物的传粉者种类及其适应动物传粉的花部构造,以明确其动物传粉概况。在此基础上,详细论述了该属植物如何通过视觉和嗅觉信号呈现花粉、花蜜和热量报酬供给等策略,实现对传粉者的有效吸引。在传粉者访问前后,鸢尾属植物还可通过合理的花展示、单花内雌雄功能的时空隔离以及传粉后的调控以实现最大程度的异交。此外,影响其传粉者吸引及异交的第三方生物和非生物因素,如食花者和资源配置,也应受到重视。今后随着相关研究的深入和技术手段的革新,研究者应针对鸢尾属植物传粉的热点或有争议的问题,采用花信号定量测定及异交率分子检测等先进技术,通过大范围的对比研究,深入揭示鸢尾属植物与传粉者的互作模式及其繁殖策略。
    Abstract: Iris comprises approximately 280 species with variable floral traits, which makes it an ideal genus for scientific and horticultural research. Although some irises are capable of selfing and clonal reproduction, pollinator-mediated outcrossing still plays an important role in species maintenance and genetic diversity. However, pollinator attraction and outcrossing strategies in Iris have yet to be systematically summarized. In this paper, we describe the pollinator diversity and floral architecture adaptations for animal pollination in irises. On this basis, we introduce how visual and olfactory signals and floral rewards (eg., pollen, nectar, and heat) are presented in Iris to attract pollinators. Before and after pollinator visitation, Iris plants can promote outcrossing by regulating their floral display, spatiotemporal isolation of male and female functions, and post-pollination processes. Furthermore, third-party factors like florivores and resource allocations need to be considered in studies on pollinator attraction and outcrossing in Iris. Future research should focus on hot or controversial issues with the use of advanced techniques like quantitative measurement of floral signals and molecular detection of outcrossing rates, and on large-scale comparison of the modes of plant-pollinator interactions and outcrossing strategies in Iris species.
  • [1]

    Mathew B. The Iris[M]. New York:Universe Books, 1981.

    [2] 胡永红, 肖月娥. 湿生鸢尾:品种赏析、栽培及应用[M]. 北京:科学出版社, 2012:24-25.
    [3] 赵毓棠. 中国植物志:第16卷[M]. 北京:科学出版社, 1985:133.
    [4]

    Stebbins GL. Adaptive radiation of reproductive characte-ristics in angiospermsⅠ:pollination mechanisms[J]. Annu Rev Sociol, 1970, 1(1):307-26.

    [5]

    Gong YB, Huang SQ. Floral symmetry:pollinator-mediated stabilizing selection on flower size in bilateral species[J]. Proc R Soc B-Biol Sci, 2009, 276(1675):4013-4020.

    [6]

    Gong YB, Huang SQ. Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits[J]. Oecologia, 2011, 166(3):671-680.

    [7] 黄双全. 花部特征演化的最有效传粉者原则:证据与疑问[J]. 生命科学, 2014, 26(2):118-124.

    Huang SQ. Most effective pollinator principle of floral evolution:evidence and query[J]. Chinese Bulletin of Life Sciences, 2014, 26(2):118-124.

    [8] 张大勇. 植物生活史进化与繁殖生态学[M]. 北京:科学出版社, 2004:107-115.
    [9]

    Xiao YE, Jin DM, Jiang K, Hu YH, Tong X, et al. Pollinator limitation causes sexual reproductive failure in ex situ populations of self-compatible Iris ensata[J]. Plant Ecol Divers, 2019. doi: https://doi.org/10.1080/17550874.

    [10]

    Shemesh H, Shani G, Carmel Y, Kent R, Sapir Y. To mix or not to mix the sources of relocated plants? The case of the endangered Iris lortetii[J]. J Nat Conserv,2018,45:41-47.

    [11] 卢继承. 鸢尾的染色体核型分析[J]. 山东师范大学学报(自然科学版), 2000, 15(2):214-216.

    Lu JC. A study of karyotype of Iris tectorum[J]. Journal of Shandong Normal University (Natural Science), 2000, 15(2):214-216.

    [12]

    Ioana C, Roxana V, Oltean I, Stoie A, Stoian V. Iris spp. Flower visitors:Pollinators vs. nectar thieves[J]. Romanian Journal of Grassland and Forage Crops, 2018, 17:11-20.

    [13] 肖月娥. 东亚间断分布植物玉蝉花(Iris ensata)亲缘地理学研究及传粉互作对其后缘种群维持的作用[D]. 上海:华东师范大学, 2014:96-106.
    [14]

    Wesselingh RA, Arnold ML. Nectar production in Louisiana iris hybrids[J]. Int J Plant Sci, 2000, 161(2):245-251.

    [15]

    Kron P, Stewart SC, Back A. Self-compatibility, autonomous self-pollination, and insect-mediated pollination in the clonal species, Iris versicolor[J]. Can J Bot, 1993, 71(11):1503-1509.

    [16]

    Ishii HS, Morinaga SI. Intra- and inter-plant level correlations among floral traits in Iris gracilipes (Iridaceae)[J]. Evol Ecol, 2005, 19(5):435-448.

    [17]

    Watts S, Sapir Y, Segal B, Dafni A. The endangered Iris atropurpurea (Iridaceae) in Israel:honey-bees, night-sheltering male bees and female solitary bees as pollinators[J]. Ann Bot, 2013, 111(3):395-407.

    [18]

    Barrett SCH, Harder LD. Ecology and evolution of plant mating[J]. Trends Ecol Evol, 1996, 11(2):73-79.

    [19]

    Burke JM, Bulger MR, Wesselingh RA, Arnold ML. Frequency and spatial patterning of clonal reproduction in Louisiana iris hybrid populations[J]. Evolution, 2000, 54(1):137-144.

    [20]

    Tarasjev A. Impact of genet size and flowering stage on fruit set in Iris pumila L. clones in wild[J]. Acta Oecol, 2005, 27(2):93-98.

    [21]

    Lavi R, Sapir Y. Are pollinators the agents of selection for the extreme large size and dark color in Oncocyclus irises?[J]. New Phytol, 2015, 205(1):369-377.

    [22]

    Morinaga SI, Sakai S. Functional differentiation in pollination processes between the outer and inner perianths in Iris gracilipes (Iridaceae)[J]. Can J Bot, 2006, 84(1):164-171.

    [23]

    Faegri K, Pilj LVD. The Principles of Pollination Ecology[M]. 3rd ed. Oxford:Pergamon Press, 1979:207-225.

    [24]

    Wesselingh RA, Arnold ML. Pollinator behaviour and the evolution of Louisiana iris hybrid zones[J]. J Evol Biol, 2000, 13:171-180.

    [25]

    Smithson A, Macnair MR. Negative frequency-dependent selection by pollinators on artificial flowers without rewards[J]. Evolution, 1997, 51(3):715-723.

    [26]

    Imbert E, Wang H, Anderson B, Hervouet B, Talavera M, Schatz B. Reproductive biology and colour polymorphism in the food-deceptive Iris lutescens (Iridaceae)[J]. Acta Bot Gall, 2014, 161(2):117-127.

    [27]

    Imbert E, Wang H, Conchou L, Vincent H, Talavera M, Schatz B. Positive effect of the yellow morph on female reproductive success in the flower colour polymorphic Iris lutescens (Iridaceae), a deceptive species[J]. J Evol Biol, 2014, 27(9):1965-1974.

    [28]

    Wang H, Talavera M, Min Y, Flaven E, Imbert E. Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterranean Iris lutescens (Iridaceae)[J]. Ann Bot, 2016, 117(6):995-1007.

    [29]

    Pellegrino G, Bellusci F, Palermo AM. Who helps whom? Pollination strategy of Iris tuberosa and its relationship with a sexually deceptive orchid[J]. J Plant Res, 2016, 129:1051-1059.

    [30]

    Monty A, Saad L, Mahy G. Bimodal pollination system in rare endemic Oncocyclus irises (Iridaceae) of Lebanon[J]. Can J Bot, 2006, 84(8):1327-1338.

    [31] 尚方剑, 王玲. 溪荪开花及传粉生物学特性[J]. 草业科学, 2014, 31(5):892-897.

    Shang FJ, Wang L. Biological characteristics of flowering and pollination of Iris sanguinea[J]. Pratacultural Science, 2014, 31(5):892-897.

    [32]

    Ye ZM, Jin XF, Wang QF, Yang CF, Inouye DW. Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in Iris bulleyana (Iridaceae)[J]. Plant Biol, 2017, 19:760-766.

    [33]

    Zhu YR, Yang M, Vamosi JC, Armbruster WS, Wan T, Gong YB. Feeding the enemy:loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana[J]. Biol Lett, 2017, 13(8):20170271.

    [34]

    Uno GE. The influence of pollinators on the breeding system of Iris douglasiana[J]. Am Midl Nat, 1982, 108(1):149-158.

    [35]

    Rudall PJ, Manning JC, Goldblatt P. Evolution of floral nectaries in Iridaceae[J]. Ann Mo Bot Gard, 2003, 90(4):613-631.

    [36] 余小芳, 张海琴, 何雪梅, 谢全, 周永红. 鸢尾属12种(变种)植物花粉形态及其系统学意义[J]. 园艺学报, 2010, 37(7):1175-1182.

    Yu XF, Zhang HQ, He XM, Xie Q, Zhou YH. Pollen morphology of 12 species of Iris L. and its systematic significations[J]. Acta Horticulturae Sinica, 2010, 37(7):1175-1182.

    [37]

    Uno GE. Comparative reproductive biology of hermaphroditic and male-sterile Iris douglasiana Herb (Iridaceae)[J]. Am J Bot, 1982, 69(5):818-823.

    [38]

    Avishai M. Species relationships and cytogenetic affinities in section Oncocyclus of the genus Iris[D]. Jerusalem:Hebrew University,1977(Unpublished).

    [39]

    Sapir Y, Shmida A, Ne'eman G. Pollination of Oncocyclus irises (Iris:Iridaceae) by night-sheltering male bees[J]. Plant Biol, 2005, 7(4):417-424.

    [40]

    Sapir Y, Shmida A, Ne'eman G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises[J]. Oecologia, 2006, 147(1):53-59.

    [41]

    Hu Y, Barrett SCH, Zhang DY, Liao WJ. Experimental analysis of mating patterns in a clonal plant reveals contrasting modes of self-pollination[J]. Ecol Evol, 2005, 5(22):5423-5431.

    [42] 张玉芬, 张大勇. 克隆植物的无性与有性繁殖对策[J]. 植物生态学报, 2006, 30(1):174-183.

    Zhang YF, Zhang DY. A sexual and sexual reproductive strategies in clonal plants[J]. Journal of Plant Ecology, 2006, 30(1):174-183.

    [43]

    Cruzan MB, Hamrick JL, Arnold ML, Bennett BD. Mating system variation in hybridizing irises:Effects of phenology and floral densities on family outcrossing rates[J]. Heredity, 1994, 72(2):95-105.

    [44]

    Ishii HS, Sakai S. Implications of geitonogamous pollination for floral longevity in Iris gracilipes[J]. Funct Ecol, 2001, 15(5):633-641.

    [45]

    Kimura T, Ishii HS, Sakai S. Selfed-seed production depending on individual size and flowering sequence in Iris gracilipes (Iridaceae)[J]. Can J Bot, 2002, 80(10):1096-1102.

    [46]

    Back AJ, Kron P, Stewart SC. Phenological regulation of opportunities for within-inflorescence geitonogamy in the clonal species, Iris versicolor (Iridaceae)[J]. Am J Bot, 1996, 83(8):1033-1040.

    [47]

    Segal B, Sapir Y, Carmel Y. Fragmentation and pollination crisis in the self-incompatible Iris bismarckiana (Irida-ceae), with implications for conservation[J]. Isr J Ecol Evol, 2006, 52(2):111-122.

    [48]

    Barrett SCH. The evolution of mating strategies in flowering plants[J]. Trends Ecol Evol, 1998, 18(12):335-341.

    [49] 许玉凤, 韩静, 海风, 宋哲, 何菲菲. 鸢尾属植物花粉活力和柱头可授性的研究[J]. 北方园艺, 2010(16):129-131.

    Xu YF, Han J, Hai F, Song Z, He FF. Study on stigma receptivity and pollen viability of Iris[J]. Northern Horticulture, 2010(16):129-131.

    [50] 马玉梅, 张云, 秦景逸, 王秀梅, 朱甜甜. 膜苞鸢尾花粉形态、活力与柱头可授性研究[J]. 新疆农业科学, 2017, 54(1):110-116.

    Ma YM, Zhang Y, Qin JY, Wang XM, Zhu TT. Pollen morphology, viability and stigma receptivity of Iris scariosa Willd[J]. Xinjiang Agricultural Sciences, 2017, 54(1):110-116.

    [51] 刘宗才, 焦铸锦, 董旭升, 代金星. 鸢尾的花部结构及繁育系统特征[J]. 园艺学报, 2011, 38(7):1333-1340.

    Liu ZC, Jiao ZJ, Dong XS, Dai JX. Floral syndrome and breeding system of Iris tectorum[J]. Acta Horticulturae Sinica, 2011, 38(7):1333-1340.

    [52] 马玉梅, 张云, 秦景逸, 王秀梅, 朱甜甜. 膜苞鸢尾的开花特性及繁育系统[J]. 东北林业大学学报, 2017, 45(3):44-47.

    Ma YM, Zhang Y, Qin JY, Wang XM, Zhu TT. Characte-ristics of flowering and breeding systems of Iris scariosa[J]. Journal of Northeast Forestry University, 2017, 45(3):44-47.

    [53] 关文灵, 李叶芳, 陈贤, 杨德. 蝴蝶花花器结构和开花授粉生物学特性[J]. 园艺学报, 2009, 36(10):1485-1490.

    Guan WL, Li YF, Chen X, Yang D. Flower structure and biological characteristics of flowering and pollination in Iris japonica Thunb[J]. Acta Horticulturae Sinica, 2009, 36(10):1485-1490.

    [54] 方瑾. 植物的生殖讲座(五):被子植物的自交不亲和性[J]. 生物学通报, 1996, 31(7):28-30.

    Fang J. Lecture on plant reproduction (5):self-incompatibility of angiosperms[J]. Bulletin of Biology, 1996, 31(7):28-30.

    [55]

    Pellegrino G. Pollinator limitation on reproductive success in Iris tuberosa[J]. AoB Plants, 2015, 7:89.

    [56]

    McCall AC, Irwin RE. Florivory:the intersection of pollination and herbivory[J]. Ecol Lett, 2006, 9(12):1351-1365.

    [57]

    Strauss SY, Whittall JB. Non-pollinator agents of selection on floral traits[M]//Harder LD, Barrett SCH, eds. Ecology and Evolution of Flowers. Oxford:Oxford University Press, 2006:120-138.

    [58]

    Singh VK, Barman C, Tandon R. Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae)[J]. PLoS One, 2014, 9(7):e102607.

    [59]

    Ghara M, Ewerhardy C, Yardeni G, Matzliach M, Sapir Y. Does floral herbivory reduce pollination-mediated fitness in shelter rewarding Royal Irises?[J]. BioRxiv, 2017. doi: http://dx.doi.org/10.1101/184382.

    [60]

    Sapir Y, Ghara M. The (relative) importance of pollinator-mediated selection for evolution of flowers[J]. Am J Bot, 2017, 104(12):1787-1789.

    [61]

    Sapir Y, Shmida AVI, Fragman ORI, Comes HP. Morphological variation of the Oncocyclus irises (Iris:Iridaceae) in the southern Levant[J]. Bot J Linnean Soc, 2002, 139(4):369-382.

    [62]

    Zandt PAV, Mopper S. Delayed and carryover effects of salinity on flowering in Iris hexagona (Iridaceae)[J]. Am J Bot, 2002, 89(11):1847-1851.

    [63]

    Ollerton J. Pollinator diversity:distribution, ecological function, and conservation[J]. Annu Rev Sociol, 2017, 48(1):353-376.

    [64]

    Yang M, Deng GC, Gong YB, Huang SQ. Nectar yeasts enhance the interaction between Clematis akebioides and its bumblebee pollinator[J]. Plant Biol, 2019. doi: 10.1111/plb.12957.

    [65] 朱亚如, 龚燕兵. 风媒传粉的研究方法探讨[J]. 生物多样性, 2017, 25(8):864-873.

    Zhu YR, Gong YB. Methods of wind pollination[J]. Biodiversity Science, 2017, 25(8):864-873.

    [66]

    Dai C, Luo WJ, Gong YB, Liu F, Wang ZX. Resource reallocation patterns within Sagittaria trifolia inflorescences following differential pollination[J]. Am J Bot, 2018, 105(4):803-811.

    [67]

    Ramos SE, Schiestl FP. Rapid plant evolution driven by the interaction of pollination and herbivory[J]. Science, 2019, 364(6436):193-196.

  • 期刊类型引用(5)

    1. 李琪,马菡泽,吉乃提汗·马木提. 春季开花植物膜苞鸢尾的花部综合征与繁育系统研究. 广西植物. 2024(04): 756-765 . 百度学术
    2. 张欣,邓婉婷,张森,方俞冰,刘丽萍. 鸢尾根部石蜡切片结构观察. 特种经济动植物. 2024(09): 17-19 . 百度学术
    3. 范少茹,符佳豪,庄秋荣,张永侠,王银杰,张婷,刘清泉,田松青,原海燕. 黄菖蒲花部特征及繁育习性研究. 草地学报. 2023(01): 96-104 . 百度学术
    4. 邹晓春,龚燕兵. 传粉者友好型城市:现状与展望. 生物资源. 2021(06): 597-605 . 百度学术
    5. 刘乐乐,曹效东,徐正茹,张君芳,吴永华. 喜盐鸢尾花部特征与交配系统研究. 草地学报. 2021(12): 2733-2741 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  790
  • HTML全文浏览量:  14
  • PDF下载量:  964
  • 被引次数: 14
出版历程
  • 收稿日期:  2019-03-19
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-10-27

目录

    /

    返回文章
    返回