Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China
-
摘要: 基于野生莲(Nelumbo nucifera Gaertn.)136个分布点的数据和14个环境因子参数,运用规则集遗传算法(GARP)和最大熵(MaxEnt)两个生态位模型对他们在我国的适生分布区进行预测。结果显示:根据GARP和MaxEnt模型计算得到的ROC曲线下面积的AUC均值分别为0.861和0.964,其中MaxEnt模型的AUC值更大,预测结果更精准。MaxEnt模型预测结果表明,莲的最适分布区主要集中在四川、湖北、湖南等地的大部分地区,江西北部,以及黑龙江、辽宁、浙江、广东等地的小部分地区。刀切法(Jackknife)检测结果表明,影响莲适生分布区的主要环境因子包括:水汽压、海拔、年平均气温、多年平均降水量、最热季节平均温度、最冷季节平均温度、最干月降水量、最冷月最低温和最热月最高温等。适生区环境因子的统计分析结果显示,野生莲最适宜生长在海拔1~2216 m、年降水量丰富(1202.50 mm)、年均温约为16.19℃、最热月温度范围在24.60℃~35.10℃、最冷月均温不低于-0.53℃的地区。研究结果可为有效保护中国野生莲资源提供有利依据。Abstract: Based on data of 136 distribution points and 14 environmental factor parameters, we applied both the GARP and MaxEnt niche models to predict the suitable distribution areas of wild Nelumbo nucifera Gaertn. in China. The average AUC values under the ROC curves from the GARP and MaxEnt models were 0.861 and 0.964, respectively, indicating that the MaxEnt model had more accurate prediction results. Furthermore, the MaxEnt model results showed that the optimal distribution areas of N. nucifera were mainly located in Sichuan, Hubei, and Hunan provinces, northern Jiangxi province, and a small part of Heilongjiang, Liaoning, Zhejiang, and Guangdong provinces. The Jackknife test indicated that the main environmental factors determining the potential distribution areas of N. nucifera were vapor pressure, elevation, mean annual temperature, annual average precipitation, average temperature in the hottest season, average temperature in the coldest season, the driest monthly precipitation, the lowest temperature in the coldest month, and the highest temperature in the hottest month. Statistical analysis of the environmental factors related to the potential distribution demonstrated that the most appropriate habitat conditions for N. nucifera were an elevation of 1-2216 m, high annual average precipitation (1202.50 mm), mean annual temperature of 16.19℃, average temperature in the hottest month from 24.60℃ to 35.10℃, and mean tolerated temperature in the coldest month of -0.53℃. These results will provide a favorable basis for the effective conservation of wild resources of N. nucifera in China.
-
Keywords:
- Nelumbo nucifera /
- Potential distribution /
- GARP model /
- MaxEnt model /
- Resource protection
-
-
[1] Melzer A. Aquatic macrophytes as tools for lake management[M]//Harper DAT, Brierley B, Ferguson AJD, Phillips G, eds. The Ecological Bases for Lake and Reservoir Management. Dordrecht:Springer, 1999.
[2] Sand JK, Riis T, Vestergaard O, Larsen SE. Macrophyte decline in Danish lakes and streams over the past 100 years[J]. J Ecol, 2000, 88(6):1030-1040.
[3] Körner S. Loss of submerged macrophytes in shallow lakes in North-Eastern Germany[J]. Int Rev Hydrobiol, 2002, 87(4):375-384.
[4] Phillips G, Willby N, Moss B. Submerged macrophyte decline in shallow lakes:what have we learnt in the last forty years?[J]. Aquat Bot, 2016, 135:37-45.
[5] Short FT, Kosten S, Morgan PA, Malone S, Moore GE. Impacts of climate change on submerged and emergent wetland plants[J]. Aquat Bot, 2016, 135:3-17.
[6] Carpenter SR, Lodge DM. Effects of submersed macrophytes on ecosystem processes[J]. Aquat Bot, 1986, 26:341-370.
[7] Bakker ES, Sarneel JM, Gulati RD, Liu Z, Van DE. Restoring macrophyte diversity in shallow temperate lakes:biotic versus abiotic constraints[J]. Hydrobiologia, 2013, 710(1):23-37.
[8] Valk VDAG. Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline[J]. Vegetatio, 1994, 110(2):185-196.
[9] Havens KE, Fox D, Gornak S, Hanlon C. Aquatic vegetation and largemouth bass population responses to water-level variations in lake Okeechobee, Florida (USA)[J]. Hydrobiologia, 2005, 539(1):225-237.
[10] Thuiller W, Araujo MB, Lavorel S. Do we need land-cover data to model species distributions in Europe?[J]. J Biogeogr, 2004, 31(3):353-361.
[11] Luoto M, Virkkala R, Heikkinen RK. The role of land cover in bioclimatic models depends on spatial resolution[J]. Global Ecol Biogeogr, 2007, 16(1):34-42.
[12] 吴征镒, 孙航, 周浙昆, 彭华, 李德铢. 中国植物区系中的特有性及其起源和分化[J]. 云南植物研究, 2005, 27(6):577-601. Wu ZY, Sun H, Zhou ZK, Peng H, Li DZ.Origin and differentiation of endemism in the flora of China[J]. Acta Botanica Yunnanica, 2005, 27(6):577-601.
[13] 薛建华, 卓丽环, 周世良. 黑龙江野生莲遗传多样性及其地理式样[J]. 科学通报, 2006, 51(3):299-308. Xue JH, Zhuo LH, Zhou SL. Genetic diversity of wild lotus in Heilongjiang and its geographical pattern[J]. Chinese Science Bulletin, 2006, 51(3):299-308.
[14] 瞿桢, 魏英辉, 李大威, 肖丽舟, 徐金星, 等. 莲品种资源的SRAP遗传多样性分析[J]. 氨基酸和生物资源, 2008, 30(3):21-25. Qu Z, Wei YH, Li DW, Xiao LZ, Xu JX, et al. Genetic diversity analysis of Nelumbo nucifera based on SRAP markers[J]. Amino Acids and Biotic Resources, 2008, 30(3):21-25.
[15] 欧阳冬梅, 刘凰, 徐金星, 刘春华, 邹东旺, 等. 基于SRAP标记的莲种质资源遗传多样性分析[J]. 长江蔬菜, 2012(16):35-38. Ouyang DM, Liu H, Xu JX, Liu CH, Zou DW, et al. Genetic diversity analysis of Nelumbo accessions based on SRAP markers[J]. Journal of Changjiang Vegetables, 2012(16):35-38.
[16] 王硕. 莲的杂交育种及杂交F1代的遗传分析[D]. 哈尔滨:东北林业大学, 2013. [17] 谢克强, 张香莲, 杨良波, 徐金星, 苏颖, 张涛. 太空搭载结合离子注入进行白莲诱变育种的研究[J]. 核农学报, 2004, 18(4):303-306. Xie KQ, Zhang XL, Yang LB, Xu JX, Su Y, Zhang T. Effects of ion implantation on lotus seeds from space mutation[J]. Journal of Nuclear Agricultural Sciences, 2004, 18(4):303-306.
[18] 王玲, 王硕, 薛建华, 周世良. 中国野生莲莲子的形态变异[J]. 河北农业大学学报, 2013, 36(1):16-20. Wang L, Wang S, Xue JH, Zhou SL. Morphological variations of wild lotus fruits in China[J]. Journal of Agricultural University of Hebei, 2013, 36(1):16-20.
[19] Fleishman E, Nally RM, Fay JP, Murphy DD. Modeling and predicting species occurrence using broad-scale environmental variables:an example with butterflies of the Great Basin[J]. Conserv Biol, 2001, 15(6):1674-1685.
[20] Peterson AT, Vieglais DA. Predicting species invasions using ecological niche modeling:new approaches from bioinformatics attack a pressing problem[J]. BioScience, 2001, 51(5):363-371.
[21] Scott JM, Heglund PJ, Wall WA, Morrison ML. Predicting Species Occurrences:Issues of Accuracy and Scale[M]. Washington:Island Press, 2002.
[22] 张东方, 张琴, 郭杰, 孙成忠, 吴杰, 等. 基于MaxEnt模型的当归全球生态适宜区和生态特征研究[J]. 生态学报, 2017, 37(15):5111-5120. Zhang DF, Zhang Q, Guo J, Sun ZC, Wu J, et al. Research on the global ecological suitability and characteristics of regions with Angelica sinensis based on the MaxEnt model[J]. Acta Ecologica Sinica, 2017, 37(15):5111-5120.
[23] 朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98. Zhu GP, Liu GQ, Bu WJ, Gao YB.Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
[24] Kulhanek SA, Leung B, Ricciardi A. Using ecological niche models to predict the abundance and impact of invasive species:application to the common carp[J]. Ecol Appl, 2011, 21(1):203-213.
[25] Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006, 29(2):129-151.
[26] Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3-4):231-259.
[27] Stockwell D. The GARP modelling system:problems and solutions to automated spatial prediction[J]. Int J Geogr Inf Sci, 1999, 13(2):143-158.
[28] Higgins SI, Richardson DM, Cowling RM. Modeling invasive plant spread:the role of plant-environment interactions and model structure[J]. Ecology, 1996, 77(7):2043-2054.
[29] Proosdij VASJ, Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models[J]. Ecography, 2016, 39(6):542-552.
[30] Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological-niche factor analysis:how to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7):2027-2036.
[31] Luoto M, Heikkinen RK, Pöyry J, Saarinen K. Determinants of the biogeographical distribution of butterflies in boreal regions[J]. J Biogeogr, 2006, 33(10):1764-1778.
[32] Dorji S, Vernes K, Rajaratnam R. Habitat correlates of the red panda in the temperate forests of Bhutan[J]. PLoS One, 2011, 6(10):e26483.
[33] Owens HL, Bentley AC, Peterson AT. Predicting suitable environments and potential occurrences for coelacanths (Latimeria spp.)[J]. Biodivers Conserv, 2012, 21(2):577-587.
[34] Heikkinen R, Leikola N, Fronzek S, Toivonen H. Predicting distribution patterns and recent northward range shift of an invasive aquatic plant:Elodea canadensis in Europe[J]. BioRisk, 2009, 2:1-32.
[35] 陈璐, 孙希华, 林泽民. 基于GARP的大薸潜在适生区预测[J]. 安徽农业科学, 2015, 43(2):243-245. Chen L, Sun XH, Lin ZM. GARP-based prediction of potential distribution of Pistia stratiotes L. in China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(2):243-245.
[36] 陈立立, 余岩, 何兴金. 喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测[J]. 生物多样性, 2008, 16(6):578-585. Chen LL, Yu Y, He XJ. Historical invasion and expansion process of Alternanthera philoxeroides and its potential spread in China[J]. Biodiversity Science, 2008, 16(6):578-585.
[37] Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, et al. Niche breadth and geographic range size as determinants of species survival on geological time scales[J]. Global Ecol Biogeogr, 2015, 24(10):1159-1169.
[38] 薛建华, 卓丽环, 郭玉民, 苏含英. 黑龙江省野生莲资源的现状及保护[J]. 哈尔滨师范大学自然科学学报, 2005, 21(2):87-91. Xue JH, Zhuo LH, Guo YM, Su HY. The situation and protection of wild-lotus resource on Heilongjiang province[J]. Natural Science Journal of Harbin Normal University, 2005, 21(2):87-91.
[39] 李静. 黑龙江省野生莲的分布及应用[J]. 黑龙江农业科学, 2009(1):81-83. Li J. Distribution and application of wild-lotus resource in Heilongjiang province[J]. Heilongjiang Agricultural Sciences, 2009(1):81-83.
[40] 王瑞. 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测[D]. 北京:中国科学院植物研究所, 2006. [41] Wang R, Wang YZ. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Divers Distrib, 2006, 12(4):397-408.
[42] 王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. Wang YS, Xie BY, Wang FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
[43] Engler R, Guisan A, Rechsteiner L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data[J]. J Appl Ecol, 2004, 41(2):263-274.
[44] Carnaval AC, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest[J]. J Biogeogr, 2008, 35(7):1187-1201.
[45] Escobar LE, Awan MN, Qiao H. Anthropogenic distur-bance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus):Using ecological niche modeling and nighttime light satellite imagery[J]. Biol Conserv, 2015, 191:400-407.
[46] 郑卉, 何兴金. 苋属4种外来有害杂草在中国的适生区预测[J]. 植物保护, 2011, 37(2):81-86. Zheng H, He XJ. Prediction of potential distribution of four alien invasive Amaranthus weeds in China[J]. Plant Protection, 2011, 37(2):81-86.
[47] Working groupⅡ contribution to the fourth assessment report of the IPCC. Climate change 2007-impacts, adaptation and vulnerability[R]. Cambridge, 2007.
[48] 薛建华, Kryukova MV, Rubtsova TA, Pshennikova LM, Bolotova YV. 走近黑龙江流域野生莲[J]. 生命世界, 2015(6):4-16. Xue JH, Kryukova MV, Rubtsova TA, Pshennikova LM, Bolotova YV. Approaching the wild lotus in the Heilongjiang River Basin[J]. Life World, 2015(6):4-16.
[49] Matthews WJ. Patterns in Freshwater Fish Ecology[M]. Boston:Springer, 1998.
[50] Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations[J]. J Environ Qual, 2009, 38(5):1930-1941.
[51] 李宏群, 李宇轩, 刘晓莉, 丁世敏, 张倩倩, 等. 基于Maxent生态位模型的水葫芦在中国的适生区预测[J]. 生态科学, 2018, 37(3):143-147. Li HQ, Li YX, Liu XL, Ding SM, Zhang QQ, et al. Prediction of potential distribution for water hyacinth in China by using Maxent ecologic niche model[J]. Ecological Science, 2018, 37(3):143-147.
[52] 薛建华, 曹晓青, Kryukova MV, Rubtsova TA. 黑龙江流域野生莲及其生物学特性[J]. 国土与自然资源研究, 2010(5):66-68. Xue JH, Cao XQ, Kryukova MV, Rubtsova TA. Wild lotus in the Heilongjiang river valley and its biological characte-ristics[J]. Territory and Natural Resources Study, 2010(5):66-68.
-
期刊类型引用(2)
1. 杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析. 生物工程学报. 2023(12): 4965-4981 . 百度学术
2. 王寻,张天恩,由春香,韩月彭,王小非,郝玉金. 蔷薇科苹果、梨和桃RKD转录因子家族比较分析. 植物生理学报. 2020(10): 2132-2148 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 932
- HTML全文浏览量: 1
- PDF下载量: 594
- 被引次数: 3