Short-term effects of simulated nitrogen deposition on herbaceous plants and soil fertility in the Betula ermanii Cham. forest of Changbai Mountain
-
摘要: 选取长白山岳桦林中的岳桦-蟹甲草群落(Comm.Betula ermanii-Parasenecio forrestii)、岳桦-藜芦群落(Comm.Betula ermanii-Veratrum nigrum)和岳桦-小叶章群落(Comm.Betula ermanii-Deyeuxia purpurea)开展野外模拟氮沉降实验,采用野外原位模拟实验方法,设置对照(0 kg·hm-2·a-1)、低氮(30 kg·hm-2·a-1)、中氮(50 kg·hm-2·a-1)和高氮(100 kg·hm-2·a-1)4个氮处理水平,测定草本植物生长状况和土壤肥力,研究岳桦林下草本层植物和土壤肥力对氮沉降的短期响应。结果显示:(1)岳桦林下草本植物随氮沉降量的增加而加速生长,小叶章对氮沉降的响应较为敏感,藜芦次之,蟹甲草最弱;(2)氮添加造成林下土壤肥力发生变化,有机质含量下降,特别是岳桦-小叶章群落下的土壤有机质含量下降最明显;土壤总氮和速效氮含量增大,岳桦-蟹甲草群落下的土壤总氮和速效氮增加最多;土壤总磷和速效磷含量减小,岳桦-小叶章群落下的土壤总磷和速效磷含量的减少最多。本研究结果表明氮添加在短期内会促进长白山岳桦林下草本植物生长,尤其是小叶章的生长,加快土壤有机质的分解和磷的释放,逐步改变土壤肥力并反馈给植物,促使其进一步变化。Abstract: To investigate the effects of nitrogen deposition on herb-layer plants and soil fertility in a Betula ermanii Cham. forest, we carried out simulated nitrogen deposition experiments on the B. ermanii-Parasenecio forrestii, B. ermanii-Veratrum nigrum, and B. ermanii-Deyeuxia purpurea communities in the B. ermanii forest of Changbai Mountain. We established control (0 kg·hm-2·a-1), low nitrogen (30 kg·hm-2·a-1), medium nitrogen (50 kg·hm-2·a-1), and high nitrogen (100 kg·hm-2·a-1) treatment gradients to assess the status of herbaceous plants and soil fertility. Results suggested that:(1) Growth of herbaceous plants in the B. ermanii forest was accelerated by nitrogen addition, with B. ermanii-D. purpurea being the most sensitive, followed by B. ermanii-V. nigrum, and B. ermanii-P. forrestii. (2) In regard to changes in soil fertility caused by nitrogen deposition, soil organic matter decreased, especially in the B. ermanii-D. purpurea community. In addition, total and available nitrogen increased, whereas total and available phosphorus decreased with the increase in nitrogen addition. Total and available nitrogen increased most in the B. ermanii-P. forrestii community, whereas total and available phosphorus decreased most in the B. ermanii-D. purpurea community. Thus, we concluded that nitrogen addition could promote the growth of the understory herbaceous plants in the B. ermanii forest, especially D. purpurea, and accelerate the decomposition of soil organic matter and release of phosphorus, which could gradually change soil fertility and further influence plant growth.
-
-
[1] Davidson EA. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nat Geosci, 2009, 2:659-662.
[2] Bowman WD, Murgel J, Blett T, Porter E. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park[J]. J Environ Manage, 2012, 103(30):165-171.
[3] Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Astron Astrophys, 2008, 565(9):89-93.
[4] Macdonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests[J]. Glob Chang Biol, 2002, 8:1028-1033.
[5] Dise NB, Rothwell JJ, Gauci V, Salm CVD, Vries WD. Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases[J]. Sci Total Environ, 2009, 407(5):1798-1808.
[6] Stevens CJ, Thompson K, Grime JP, Long CJ, Gowing DJG. Contribution of acidification and eutrophication to declines in species richness of calcifuges grasslands along a gradient of atmospheric nitrogen deposition[J]. Funct Ecol, 2010, 24(24):478-484.
[7] Zbieranowski AL, Aherne J. Spatial and temporal concentration of ambient atmospheric ammonia in southern Ontario[J]. Atmos Environ, 2012, 62(15):441-450.
[8] McDonough AM, Watmough SA. Impacts of nitrogen deposition on herbaceous ground flora and epiphytic foliose lichen species in southern Ontario hardwood forests[J]. Environ Pollut, 2015, 196(2):78-88.
[9] Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-62.
[10] 李伟斌,金昌杰,井艳丽,吴家兵,袁凤辉,关德新,王安志. 长白山阔叶红松林土壤呼吸对氮沉降增加的响应[J]. 东北林业大学学报, 2014, 42(12):89-93, 122. Li WB, Jin CJ, Jin YL, Wu JB, Yuan FH, Guan DX, Wang AZ. Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains[J]. Journal of Northeast University, 2014, 42(12):89-93, 122.
[11] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW. Technical report:human alteration of the global nitrogen cycle:sources and consequences[J]. Ecol Appl, 1997, 7(3):737.
[12] Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, et al. Nitrogen excess in North American ecosystems:predisposing factors, ecosystem responses and management strategies[J]. Ecol Appl, 1998, 8(3):706-733.
[13] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis[J]. Ecol Appl, 2010, 20(1):30-59.
[14] Steltzer H, Bowman WD. Differential influence of plant species on soil nitrogen transformations within moist mea-dow alpine tundra[J]. Ecosystems, 1998, 1(5):464-474.
[15] Pearce ISK, René van der Wal. Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath[J]. Biol Conserv, 2002, 104(1):83-89.
[16] Bassin S, Volk M, Suter M, Buchmann N, Jürg Fuhrer. Nitrogen deposition but not ozone affects productivity and community composition of subalpine grassland after 3 yr of treatment[J]. New Phytol, 2007, 175(3):523-534.
[17] Paulissen MPCP, ven Der Ven PJM, Dees AJ, Bobbink R. Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input[J]. New Phytol, 2004, 164(3):451-458.
[18] 陈立新,黄兰英,乔璐,段文标,纪萱,俞元春. 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响[J]. 水土保持学报, 2012, 26(6):139-146. Chen LX, Huang YL, Qiao L, Duan WB, Ji X, Yu YC. Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands[J]. Journal of Soil and Water Conservation, 2012, 26(6):139-146.
[19] Strengbom J, W alheim M, Nasholm T, Ericson L. Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests[J]. Ambio, 2003, 32:91-97.
[20] Gilliam FS, Welch NT, Phillips AH, Bilimyer JH, Peterjohn WT, Fowler ZK, et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition[J]. Ecosphere, 2016, 7(4):1-16.
[21] 靳英华,许嘉巍,宗盛伟,王鹏. 氮沉降对长白山苔原植被影响的试验研究[J]. 地理科学, 2014, 34(12):1526-1532. Jin YH, Xu JW, Zong SW, Wang P. Experimental study on the effects of nitrogen deposition on the tundra vegetation of the Changbai mountains[J]. Scientia Geographica Sinica, 2014, 34(12):1526-1532.
[22] Jin YH, Xu JW, Wang YQ, Wang SX, Chen ZS, Huang XT, Niu LJ. Effects of nitrogen deposition on tundra vegetation undergoing invasion by Deyeuxia angustifolia in Changbai mountains[J]. Chinese Geogr Sci, 2016, 26(1):99-108.
[23] Miegroet HV, Cole DW, Johnson DW. Soil nitrification as affected by N fertility and changes in forest floor C/N ratio in four forest soils[J]. Can J For Res, 1990, 20:1013-1019.
[24] 肖辉林. 大气氮沉降与森林生态系统的氮动态[J]. 生态学报, 1996, 16(1):90-99. Xiao HL. Atmospheric nitrogen deposition and nitrogen dynamics of forest ecosystems[J]. Acta Ecologica Sinica, 1996, 16(1):90-99.
[25] van Breemen N, Mulder J, van Grinsven JJM. Impact of acid atmospheric deposition on woodland soils in the Netherlands:Ⅱ. N-transformations[J]. Doklady Akademii Nauk Sssr, 1987, 288(5):1242-1246.
[26] Bergkvist B, Folkeson L. Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition[J]. Water Air Soil Pollut, 1992, 65:111-133.
[27] Goodale CL, Aber JD, McDowell WH. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire[J]. Ecosystems, 2000, 3:433-450.
[28] Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska[J]. Ecology, 2002, 83:104-115.
[29] Menge DNL, Field CB. Simulated global changes alter phosphorus demand annual grassland[J]. Glob Chang Biol, 2007, 13:2582-2591.
[30] Zhang LX, Bai YF, Han XG. Differential responses of N:P stoichiometry of Leymus chinesis and Carex koeshinskyi to N addition in a steppe ecosystem in Nei Mongol[J]. Acta Botanica Sinica, 2004, 46(3):259-270.
[31] Zhang NY, Guo R, Song P, Guo JX, Gao YZ. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe,northeastern China[J]. Soil Biol Biochem, 2013, 65:96-104.
[32] Madan NJ, Deacon LJ, Robinson CH. Greater nitrogen and/or phosphorus availability increase plant species' cover and diversity at a High Arctic polar semidesert[J]. Polar Biol, 2007, 30(5):559-570.
[33] Giesler R, Esberg C, Lagerstr MA, Graae BJ. Phosphorus availability and microbial respiration across different tundra vegetation types[J]. Biogeochemistry (Dordrecht), 2012, 108(1-3):429-445.
[34] Zamin TJ, Grogan P. Birch shrub growth in the low Arctic:the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion[J]. Environ Res Lett, 2012, 7(3):1-9.
[35] 汪金松,王晨,赵秀海,张春雨,李化山,王娜,赵博. 模拟氮沉降对油松林单一及混合叶凋落物分解的影响[J]. 北京林业大学学报, 2015, 37(10):14-21. Wang JS, Wan C, Zhao XH, Zhang CY, Li HS, Wang N, Zhao B. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabulaeformis[J]. Journal of Beijing University, 2015, 37(10):14-21.
[36] 李仁洪,胡庭兴,涂利华,刘闯,雒守华,向元彬,等. 华西雨屏区慈竹林凋落叶分解过程养分释放对模拟氮沉降的响应[J]. 林业科学, 2010, 46(8):8-14. Li RH, Hu TX, Tu LH, Liu C, Luo SH, Xiang YB, et al. Nutrient release in decomposition of leaf litter in Neosinocalamus affinis stands in response to simulated nitrogen deposition in rainy area of western China[J]. Scientia Silvae Sinicae, 2010, 46(8):8-14.
[37] Crowley KF, Mcneil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?[J]. Ecosystems, 2012, 15(6):940-957.
-
期刊类型引用(2)
1. 杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析. 生物工程学报. 2023(12): 4965-4981 . 百度学术
2. 王寻,张天恩,由春香,韩月彭,王小非,郝玉金. 蔷薇科苹果、梨和桃RKD转录因子家族比较分析. 植物生理学报. 2020(10): 2132-2148 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 685
- HTML全文浏览量: 7
- PDF下载量: 683
- 被引次数: 3