Cloning, expression analysis, and subcellular position of MdPH1 related to acidity in Malus domestica Borkh
-
摘要: 以苹果属(Malus)植物沧江海棠(M.ombrophila Hand.-Mazz)的果实为材料,对其发育过程中苹果酸的含量进行测定,并结合转录组测序的方法筛选控制果实酸度的候选基因。结果显示:MdPH1候选基因的编码区包含2829 bp,编码942个氨基酸;基因组序列全长为4269 bp,包含8个外显子和7个内含子。对10份苹果种质资源中PH1基因序列的分析结果表明,该基因序列中存在22个单核苷酸多态性(SNP),其中13个位于内含子区,9个位于外显子区;位于最后一个外显子上SNP(G/A)的变异导致了编码氨基酸从缬氨酸变为异亮氨酸。MdPH1蛋白包含8个跨膜结构域,其中蛋白N端包含3个跨膜结构域,C端包含5个跨膜结构域。系统进化分析结果显示,苹果中的PH家族成员与梨(Pyrus communis L.)中的PH家族成员聚集成一簇。组织特异性表达结果发现,MdPH1基因在苹果果实中的表达量最高,其次是叶、花和根,茎中表达量最低。亚细胞定位分析表明MdPH1蛋白定位于液泡膜上。Abstract: In this study, the malic acid content in Malus fruit was determined using Malus ombrophila Hand.-Mazz, with comparative transcriptome analysis conducted among developmental stages. A candidate gene for fruit acidity, designated as MdPH1, was identified. Genomic sequencing and gene structure analysis showed that the cDNA sequence contained a 2829 bp open reading frame and encoded a 942 amino acid polypeptide. The genomic DNA of MdPH1 was 4269 bp in length and consisted of eight exons and seven introns. According to the PH1 gene sequence in 10 Malus accessions, 22 single nucleotide polymorphisms (SNPs) were identified in the genomic sequence. Of these SNPs, 13 were located in introns and nine were located in exons. Variation of a SNP (G/A) on the last exon resulted in the conversion of the encoded amino acid from valine to isoleucine. In addition, the MdPH1 protein contained eight transmembrane domains (TMDs). Of these TMDs, three were located in the amino terminal and five were located in the carboxyl terminal. Exploration of the phylogenetic relationships revealed a close relationship between PH1 genes from apple and pear. Gene expression indicated that MdPH1 was highly expressed in apple fruit, followed by the leaves and flower, and finally the stem. Subcellular localization assay showed that MdPH1 was localized to the tonoplast. Our study provides useful knowledge to better understand the complex mechanisms regulating apple fruit acidity.
-
Keywords:
- Malus ombrophila /
- Fruit acidity /
- MdPH1 gene /
- Gene structure /
- Gene expression /
- Subcellular localization
-
-
[1] 王皎, 李赫宇, 刘岱琳. 苹果的营养成分及保健功效研究进展[J].食品研究与开发, 2011, 32(1):164-169. Wang J, Li HY, Liu DL. Research progress of apple nutrition components and health function[J]. Food Research and Development, 2011, 32(1):164-169.
[2] 马百全. 苹果资源果实糖酸性状评估及酸度性状的候选基因关联分析[D]. 武汉:中国科学院武汉植物园, 2016. [3] Ma BQ, Chen J, Zheng HY, Fang T, Collins O, et al. Comparative assessment of sugar and malic acid composition in cultivated and wild apples[J]. Food Chem, 2015, 172:86-91.
[4] Ma BQ, Yuan YY, Gao M, Li CY, Collins O, et al. Determination of predominant organic acid components in Malus species:correlation with apple domestication[J]. Metabolites, 2018, 8(4):74.
[5] Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers[J]. Theor Appl Genet, 1998, 97(1-2):60-73.
[6] Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C. Mapping quantitative physiological traits in apple (Malus×domestica Borkh.)[J]. Plant Mol Biol, 2003, 52(3):511-526.
[7] Kenis K, Keulemans J, Davey MW. Identification and stability of QTLs for fruit quality traits in apple[J]. Tree Genet Genomes, 2008, 4(4):647-661.
[8] Zhang Q, Ma BQ, Li H, Chang YS, Han YY, et al. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple[J]. BMC Genomics, 2012, 13:537.
[9] Xu KN, Wang AD, Brown S. Genetic characterization of the Ma locus with pH and titratable acidity in apple[J]. Mol Breeding, 2012, 30(2):899-912.
[10] Bai Y, Dougherty L, Li MJ, Fazio G, Cheng LL, Xu KN. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple[J]. Mol Genet Genomics, 2012, 287(8):663-678.
[11] Ma BQ, Zhao S, Wu BH, Wang D, Peng Q, et al. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple[J]. Tree Genet Genome, 2016, 12:1.
[12] Khan AS, Beekwilder J, Schaart JG, Mumm R, Soriano MJ, et al. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16[J]. Tree Genet Genome, 2013, 9:475-487.
[13] Ma BQ, Liao L, Zheng HY, Chen J, Wu B, et al. Genes encoding aluminum-activated malate transporterⅡ and their association with fruit acidity in apple[J]. Plant Genome, 2015, 8:1-14.
[14] Jia D, Shen F, Wang Y, Wu T, Xu X, et al. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes:MdSAUR37, MdPP2CH and MdALMTII[J]. Plant J, 2018, 95(3):427-443.
[15] Ma BQ, Liao L, Fang T, Peng Q, Ogutu C, et al. AMa10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple[J]. Plant Biotechnol J, 2019, 17(3):674-686.
[16] Ma BQ, Yuan YY, Gao M, Qi TH, Li MJ, Ma FW. Genome-wide identification, molecular evolution, and expression divergence of Aluminum-activated malate transporters in apples[J]. Int J Mol Sci, 2018, 19(9):2807.
[17] Ma BQ, Yuan YY, Gao M, Xing L, Li CY, et al. Genome-wide identification, classification, molecular evolution and expression analysis of malate dehydrogenases in apple[J]. Int J Mol Sci, 2018, 19(11):3312.
[18] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
[19] Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7):1565-1572.
[20] Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Rep, 2014, 6(1):32-43.
[21] Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants[J]. Plant J, 2007, 51(6):1126-1136.
[22] 秦丹丹, 董静, 许甫超, 徐晴, 葛双桃, 等. 分子育种时代的作物种质资源创新与利用[J]. 大麦与谷类科学, 2016, 33(3):1-4, 19. Qin DD, Dong J, Xu FC, Xu Q, Ge ST, et al. Innovation and utilization of crop germplasm resources during the era of molecular breeding[J]. Barley and Cereal Sciences, 2016, 33(3):1-4, 19.
[23] 陈发棣, 陈素梅, 房伟民, 张飞, 蒋甲福, 等. 菊花优异种质资源挖掘与种质创新研究[J]. 中国科学基金, 2016, 30(2):112-115. Chen FD, Chen SM, Fang WM, Zhang F, Jiang JF, et al. Discovery of excellent chrysanthemum germplasms and germplasm enhancement[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(2):112-115.
[24] Kühlbrandt W. Biology, structure and mechanism of P-type ATPases[J]. Nat Rev Mol Cell Biol, 2004, 5:282-295.
[25] Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. Hyperacidification of citrus fruits by a vacuolar proton-pumping P-ATPase complex[J]. Nat Commun, 2019, 26, 10(1):744.
[26] Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, et al. New insight into the history of domesticated apple:secondary contribution of the European wild apple to the genome of cultivated varieties[J]. PLoS Genet, 2012, 8(5):e1002703.
[27] Harris SA, Robinson JP, Juniper BE. Genetic clues to the origin of the apple[J]. Trends Genet, 2002, 18(8):426-430.
[28] Ma BQ, Liao L, Peng Q, Fang T, Zhou H, et al. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple[J]. J Integr Plant Biol, 2017, 59(3):190-204.
[29] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. The genome of the domesticated apple (Malus×domestica Borkh.)[J]. Nat Genet, 2010, 42(10):833-839.
[30] Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, et al. The genome of the pear (Pyrus bretschneideri Rehd.)[J]. Genome Res, 2013, 23(2):396-408.
[31] Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, et al. The draft genome of sweet orange (Citrus sinensis)[J]. Nat Genet, 2013, 45(1):59-66.
-
期刊类型引用(2)
1. 杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析. 生物工程学报. 2023(12): 4965-4981 . 百度学术
2. 王寻,张天恩,由春香,韩月彭,王小非,郝玉金. 蔷薇科苹果、梨和桃RKD转录因子家族比较分析. 植物生理学报. 2020(10): 2132-2148 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 818
- HTML全文浏览量: 9
- PDF下载量: 494
- 被引次数: 3