Study on cell structure, physiology, and biochemistry of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link
-
摘要: 对蜡梅(Chimonanthus praecox(L.)Link)花被片维管束变黑的细胞显微结构和超微结构变化进行观察,测定和研究其生理生化指标。结果显示,中度变黑的花被片即出现维管束细胞液泡边界模糊,颗粒状物质增加,质体凝结堵塞等现象,随着维管束功能逐渐丧失,基本组织细胞失水,但表皮细胞相对饱满,以维持花朵基本功能。随着维管束变黑程度加剧,过氧化物酶(POD)活性及游离氨基酸含量持续升高,可溶性糖含量持续降低,符合花朵衰老生理特点,但丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及可溶性蛋白质含量未显著下降,表明蜡梅花朵自身对逆境的适应力较强,膜脂过氧化程度不高,大部分细胞的膜结构及内部结构受损不大。本实验可为此现象形成机理的深入研究并最终解决此问题提供一定的理论依据。Abstract: We observed the microstructure and ultramicrostructure and measured the physiological and biochemical indices of vascular bundle blackening in petals of Chimonanthus praecox (L.) Link. Results showed that moderately blackened petals exhibited vacuole wall blurring, granular substance increase, and plastid coagulation and blockage. As vascular bundle function was gradually lost, the basic tissue cells became dehydrated, but the epidermal cells remained relatively full to maintain basic flower functions. As the degree of vascular bundle blackening intensified, peroxidase (POD) activity and free amino acid content increased, whereas the soluble sugar content decreased, consistent with the physiological characteristics of flower senescence. However, malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and soluble protein content did not decrease significantly, indicating that the C. praecox flower possessed a strong ability to adapt to adversity, and the degree of membrane lipid peroxidation was not high. In addition, the membrane and internal structures of most cells were relatively undamaged. This study provides a theoretical basis for further study on the formation mechanism of this phenomenon and the final solution to this problem.
-
-
[1] 赵天榜, 陈志秀, 高炳振, 等. 中国蜡梅[M]. 河南:河南科学技术出版社, 1993:1, 147-148. [2] 宋兴荣, 何相达, 江波,等. 蜡梅栽培[M]. 北京:科学出版社, 2018:78-80. [3] 李祖任, 胡楠, 杨吉刚, 杨冰, 廖海民. 繁缕和鹅肠菜的花维管束系统比较解剖学研究及其系统学意义[J]. 植物科学学报, 2013, 31(6):525-532. Li ZR, Hu N, Yang JG, Yang B, Liao HM. Floral vascular comparative anatomy of Stellaria media and Myosoton aquaticum and its systematic significance[J]. Plant Science Journal, 2013, 31(6):525-532.
[4] 缪明志, 刘焕芳, 匡延凤, 邹璞, 何玉科, 廖景平. 粉美人蕉花部维管束的解剖学研究[J]. 热带亚热带植物学报, 2014, 22(4):344-350. Liao MZ, Liu HF, Kuang YF, Zou P, He YK, Liao JP. Floral vasculature anatomy of Canna glauca ‘Erebus’ (Cannaceae)[J]. Journal of Tropical and Subtropical Botany, 2014, 22(4):344-350.
[5] Abdelbar OH. Flower vascularization and fruit developmental anatomy of quinoa (Chenpodium quinoa Wild) Amaranthaceae[J].AOAS, 2018, 63:67-75.
[6] 李祖任, 彭琼, 吉志超, 高凯悦, 易力雄, 廖海民, 詹庆才. 重瓣野迎春花部维管束系统的解剖学观察[J]. 湖南农业科学, 2016(5):5-7. Li ZR, Peng Q, Ji ZC, Gao KY, Yi LX, Liao HM, Zhan QC. Floral vascular bundle system anatomical observation of double flower Jasminum mesnyi Hance[J]. Hunan Agricultural Sciences, 2016(5):5-7.
[7] Imsabai W, Ketsa S, Doorn WG. Role of ethylene in the lack of floral opening and in petal blackening of cut lotus (Nelumbo nucifera) flowers[J]. Postharvest Biol Tec, 2010, 58:57-64.
[8] Imsabai W, Leethiti P, Netlak P, Doorn WG. Petal blac-kening and lack of bud opening in cut lotus flowers (Nelumbo nucifera):Role of adverse water relations[J]. Pos-tharvest Biol Tec, 2013, 79:32-38.
[9] Imsabai W, Doorn WG. Effects of auxin, gibberellin, and cytokinin on petal blackening and flower opening in cut lotus flowers (Nelumbo nucifera)[J]. Postharvest Biol Tec, 2013, 75:54-57.
[10] Netlak P, Imsabai W. Role of carbohydrates in petal blackening and lack of flower opening in cut lotus (Nelumbo nucifera) flowers[J]. Agric Nat Res, 2016, 50:32-37.
[11] Salaemaea N, Satohb S, Imsabaic W, Takeda S, Kaewsuksaeng S. The combination of EthylBloc Sachet and2,4-pyridinedicarboxylic acid reduces petal blackening and prolongs vase life of cut fflowers of lotus (Nelumbo nucifera Gaerth) cvs. Sattabongkot and Saddhabutra[J]. Sci Hortic, 2018, 240:133-138.
[12] 周明芹, 向林, 陈龙清. 蜡梅花香及花色色素成分的初步研究[J]. 北京林业大学学报, 2007, 29(S1):22-25. Zhou MQ, Xiang L, Chen LQ. Preliminary studies on the components of volatile floral flavor and flower pigments of Chimonanthus praecox L.[J]. Journal of Beijing Forestry University, 2007, 29(S1):22-25.
[13] 葛雨萱, 王亮生, 徐彦军, 刘政安, 李崇晖, 贾妮. 蜡梅的花色和花色素组成及其在开花过程中的变化[J]. 园艺学报, 2008, 35(9):1331-1338. Ge YX, Wang LS, Xu YJ, Liu ZA, Li CH, Jia N. Flower color, pigment composition and the changes during flo-wering in Chimonanthus praecox Link[J]. Acta Horticulturae Sinica, 2008, 35(9):1331-1338.
[14] Yang N, Zhao KG, Li X, Zhao R, Aslam MZ, Yu L, Chen LQ. Comprehensive analysis of wintersweet fflower reveals key structural genes involved in fflavonoid biosynthetic pathway[J]. Gene, 2018, 676:279-289.
[15] Zhang S, Zhang HY, Chen LX, Xia W, Zhang WQ. Phytochemical profiles and antioxidant activities of different varietiesof Chimonanthus praecox[J].Ind Crops Prod, 2016, 85:11-21.
[16] Zhang XF, Xu M, Zhang JW, Wu LS, Liu JJ, Si JP. Identification and evaluation of antioxidant components in the flowers of five Chimonanthus species[J]. Ind Crops Prod, 2017, 102:164-172.
[17] Chen GL, Chen SG, Xiao Y, Fu NL. Antioxidant capacities and total phenolic contents of 30 fflowers[J]. Ind Crops Prod, 2018, 111:430-445.
[18] Du W, Qin KZ, Wang XF. The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae):differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening[J]. Plant Syst Evol, 2012, 298:561-567.
[19] Wang BG, Zhang Q, Wang LG, Duan K, Pan AH,Tang XM, Sui SZ, Li MY. The AGL6-like gene CpAGL6, a potential regulator of floral time and organ identity in wintersweet (Chimonanthus praecox)[J]. J Plant Growth Re-gul, 2011, 30:343-352.
[20] 王支槐. 蜡梅开花过程中的生理变化[J]. 西南师范大学学报(自然科学版), 1994, 19(6):646-650. Wang ZH. Studies on the physiological changes during flowering process in Chimonanthus praecox var. parviflora Turrill[J]. Journal of Southwest China Normal University (Natural Science), 1994,19(6):646-650.
[21] 盛爱武, 郭维明, 孙智华. 蜡梅切花内源激素动态及衰老有关因子的研究[J]. 北京林业大学学报, 1999, 21(2):48-53. Sheng AW, Guo WM, Sun ZH. Study on dynamics of endogenous hormones and parameters concerned senescence in cut wintersweet flowers[J]. Journal of Beijing Forestry University, 1999, 21(2):48-53.
[22] 罗江会, 马婧, 刘道凤, 杨建峰, 门维婷, 万超, 眭顺照, 李名扬. 乙烯对蜡梅切花开放衰老及乙烯受体基因表达的影响[J].植物生理学报, 2015(2):253-258. Luo JH, Ma J, Liu DF, Yang JF, Men WT, Wan C, Sui SZ, Li MY. Effect of ethylene on cut flower opening and senescence and expression of ethylene receptor genes in wintersweet (Chimonanthus praecox)[J]. Plant Physiology Journal, 2015(2):253-258.
[23] 方子义, 赵凯歌, 陈龙清. 蜡梅花被片表层形态观察及其意义[J]. 广西植物, 2013, 33(4):543-546. Fang ZY, Zhao KG, Chen LQ. Observation of surface morphology of Chimonanthus tepals and its significance[J]. Guihaia, 2013, 33(4):543-546.
[24] 周媛. 桂花花瓣衰老过程中细胞程序性死亡特征与机制研究[D]. 武汉:华中农业大学, 2008:26. [25] Mochizuki-Kawai H, Shibuya K, Ichimura K. Programmed cell death begins earlier in the mesophyll cells of tulip petals than in the epidermal cells[J]. Postharvest Biol Technol, 2013, 79:9-12.
[26] Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers H. Programmed cell death (PCD) progress begin extremely early in Alstoeme-ria petal senscence[J]. New Phytol, 2003, 160(1):49-59.
[27] 刘春英. 牡丹花衰老相关基因的筛选与功能研究[D]. 长沙:湖南农业大学, 2015:20-21. [28] 林如, 薛秋华. 唐菖蒲鲜切花瓶插衰老过程中抗氧化酶活性和膜脂过氧化水平初探[J].福建农林大学学报(自然科学版), 2002, 9(3):352-355. Lin R, Xue QH. A research on the activities of antioxidant enzymes and the level of membrane lipid peroxidation in senescence process of Gladiolus hybridus cut flowers[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2002, 9(3):352-355.
[29] 李德明, 张秀娟, 郑昕. 马蹄莲采后衰老生理特性的研究[J]. 北方园艺, 2010(5):93-97. Li DM, Zhang XJ, Zheng X. Study on physiological cha-racteristics on senescence of postharvest Zantedeschia[J]. Northern Horticulture, 2010(5):93-97.
[30] 张圣旺, 郑荣生, 孟丽, 郑国生. 牡丹花衰老过程中的生理生化变化[J]. 山东农业大学学报(自然科学版), 2002, 33(2):166-169. Zhang SW, Zheng RS, Meng L, Zheng GS. The changes of physiology and biochemistry in peony during senescence[J]. Journal of Shangdong Agricultural University (Natural Science), 2002, 33(2):166-169.
[31] 蒋冬月, 沈鑫, 李永红, 潘会堂. 黄兰(Michelia champaca L.)花开放和衰败过程中生理生化指标的变化[J]. 中国农学通报, 2013, 29(16):125-128. Jiang DY, Shen X, Li YH, Pan HT. Physiological and biochemical characteristics of Michelia champaca L. during florescence and flower senescence[J]. Chinese Agricultural Science Bulletin, 2013, 29(16):125-128.
[32] 袁媛, 余忆冬, 连芳青, 唐东芹. 小苍兰切花瓶插生理研究[J]. 园艺学报, 2011, 38(3):579-586. Yuan Y, Yu YD, Lian FQ, Tang DQ. Studies on physiolo-gical characteristics of cut Freesia flowers during vase holding[J]. Acta Horticulturae Sinica, 2011, 38(3):579-586.
[33] 朱诚, 曾广文. 桂花花衰老过程中的某些生理生化变化[J]. 园艺学报, 2000, 27(5):356-360. Zhu C, Zeng GW. Physiological and biochemical changes in flower senescence of Osmanthus fragrans Lour.[J]. Acta Horticulturae Sinica, 2000, 27(5):356-360.
-
期刊类型引用(2)
1. 杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析. 生物工程学报. 2023(12): 4965-4981 . 百度学术
2. 王寻,张天恩,由春香,韩月彭,王小非,郝玉金. 蔷薇科苹果、梨和桃RKD转录因子家族比较分析. 植物生理学报. 2020(10): 2132-2148 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 679
- HTML全文浏览量: 1
- PDF下载量: 418
- 被引次数: 3