高级检索+

银杏胚乳淀粉体的积累规律和发生特性

陆彦, 郝唯卓, 潘烨, 张晓敏, 祁琰, 凌裕平, 金飚, 王莉

陆彦, 郝唯卓, 潘烨, 张晓敏, 祁琰, 凌裕平, 金飚, 王莉. 银杏胚乳淀粉体的积累规律和发生特性[J]. 植物科学学报, 2019, 37(6): 788-796. DOI: 10.11913/PSJ.2095-0837.2019.60788
引用本文: 陆彦, 郝唯卓, 潘烨, 张晓敏, 祁琰, 凌裕平, 金飚, 王莉. 银杏胚乳淀粉体的积累规律和发生特性[J]. 植物科学学报, 2019, 37(6): 788-796. DOI: 10.11913/PSJ.2095-0837.2019.60788
Lu Yan, Hao Wei-Zhuo, Pan Ye, Zhang Xiao-Min, Qi Yan, Ling Yu-Ping, Jin Biao, Wang Li. Accumulation and occurrence characteristics of amyloid in Ginkgo biloba L. endosperm[J]. Plant Science Journal, 2019, 37(6): 788-796. DOI: 10.11913/PSJ.2095-0837.2019.60788
Citation: Lu Yan, Hao Wei-Zhuo, Pan Ye, Zhang Xiao-Min, Qi Yan, Ling Yu-Ping, Jin Biao, Wang Li. Accumulation and occurrence characteristics of amyloid in Ginkgo biloba L. endosperm[J]. Plant Science Journal, 2019, 37(6): 788-796. DOI: 10.11913/PSJ.2095-0837.2019.60788
陆彦, 郝唯卓, 潘烨, 张晓敏, 祁琰, 凌裕平, 金飚, 王莉. 银杏胚乳淀粉体的积累规律和发生特性[J]. 植物科学学报, 2019, 37(6): 788-796. CSTR: 32231.14.PSJ.2095-0837.2019.60788
引用本文: 陆彦, 郝唯卓, 潘烨, 张晓敏, 祁琰, 凌裕平, 金飚, 王莉. 银杏胚乳淀粉体的积累规律和发生特性[J]. 植物科学学报, 2019, 37(6): 788-796. CSTR: 32231.14.PSJ.2095-0837.2019.60788
Lu Yan, Hao Wei-Zhuo, Pan Ye, Zhang Xiao-Min, Qi Yan, Ling Yu-Ping, Jin Biao, Wang Li. Accumulation and occurrence characteristics of amyloid in Ginkgo biloba L. endosperm[J]. Plant Science Journal, 2019, 37(6): 788-796. CSTR: 32231.14.PSJ.2095-0837.2019.60788
Citation: Lu Yan, Hao Wei-Zhuo, Pan Ye, Zhang Xiao-Min, Qi Yan, Ling Yu-Ping, Jin Biao, Wang Li. Accumulation and occurrence characteristics of amyloid in Ginkgo biloba L. endosperm[J]. Plant Science Journal, 2019, 37(6): 788-796. CSTR: 32231.14.PSJ.2095-0837.2019.60788

银杏胚乳淀粉体的积累规律和发生特性

基金项目: 

国家自然科学基金项目(31901517);江苏省自然科学基金项目(BK20160464,BK20161332);中国博士后科学基金面上项目(2019M651980);江苏省林业科技创新与推广项目(LYKJ[2018]39)。

详细信息
    作者简介:

    陆彦(1981-),女,博士,助理研究员,研究方向为植物发育生物学(E-mail:luyan@yzu.edu.cn)。

    通讯作者:

    王莉,E-mail:liwang@yzu.edu.cn

  • 中图分类号: Q944.46

Accumulation and occurrence characteristics of amyloid in Ginkgo biloba L. endosperm

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31901517), Jiangsu Natural Science Foundation (BK20160464, BK20161332), China Postdoctoral Science Foundation (2019M651980), and Jiangsu Forestry Science and Technology Innovation and Popularization Project (LYKJ[2018]39).

  • 摘要: 以银杏(Ginkgo biloba L.)核用品种‘七星果’、‘马铃’和‘龙眼’不同发育天数的胚乳为材料,采用透射电镜和扫描电镜技术,对其胚乳细胞内淀粉体的积累规律和发生特性进行研究。结果显示:3种银杏胚乳形态差异显著,‘七星果’呈梭形、‘马铃’呈椭圆形、‘龙眼’呈卵圆形;3种银杏胚乳早期均为嫩绿色,后期为黄色;授粉后65~125 d是胚乳体积快速增长时期。淀粉体的积累规律为:在胚乳组织内,淀粉体由糊粉层-外胚乳-内胚乳逐渐积累;在单个胚乳细胞内,淀粉体由细胞壁边缘向内部逐渐充实。银杏淀粉质体起源于类叶绿体质体,淀粉粒最初在类叶绿体质体的内膜上发生。淀粉体通过出芽、缢缩以及出芽和缢缩同时进行的增殖方式产生新淀粉体,成熟淀粉体形态有圆形、椭圆形和不规则形,属于单粒淀粉。研究结果表明银杏淀粉体在胚乳组织内具有由外向内的空间积累规律,淀粉质体起源于类叶绿体质体并通过出芽、缢缩、出芽和缢缩同时存在的方式增殖。
    Abstract: In this study, three Ginkgo biloba L. cultivars, namely, ‘ixingguo’, ‘Maling’ and ‘Longyan’, were used to investigate the accumulation and occurrence of amyloid in the endosperm using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results showed that endosperm morphology differed among the three ginkgo cultivars, being fusiform, oval, and ovoid in ‘Qixingguo’, ‘Maling’ and ‘Longyan’, respectively. The endosperms from the three cultivars were green in the early developing stage and yellow in the later developing stage. Rapid endosperm growth occurred from 65 d to 125 d after pollination. The accumulation of starch grains in the endosperm cells showed a spatial accumulation pattern, with gradual enrichment by the aleurone layer-ecto-endosperm-inner endosperm from the edge of the cell wall to the cell interior. Amyloid developed from the grana lamella of chloroplast-like plastids. These amyloid proliferated by budding, contraction, or budding and contraction. The matured amyloid was single-starch and round, oval, or irregular in shape. In summary, the starch grains accumulated from the outside to the inside in the ginkgo endosperm. The amyloid originated from chloroplast-like plastids and proliferated by budding, contraction, or budding and contraction at the same time.
  • [1]

    Parker ML. The relationship between A-type and B-type starch granules in the developing endosperm of wheat[J]. J Cereal Sci, 1985, 3(4):271-278.

    [2] 王玲玲. 关于谷物胚乳淀粉体的发生和蛋白体形成的研究[D]. 扬州:扬州大学, 2013.
    [3] 李睿, 蓝盛银, 徐珍秀. 水稻胚乳发育中线粒体向淀粉体转变或琥珀酸脱氢酶的定位[J]. 电子显微学报, 2002, 21(2):118-122.

    Li R, Lan SY, Xu ZX. Transformation of mitochondrion to amyloplast and the cytochemical localization of succinic dehydrogenase in rice endosperm[J]. Journal of Chinese Electron Microscopy Society, 2002, 21(2):118-122.

    [4]

    Thomson WW, Whatley JM. Development of nongreen plastids[J]. Plant Physiol, 1980, 31(1):375-394.

    [5]

    Bechtel DB, Wilson JD. Amyloplast formation and starch granule development in hard red winter wheat[J]. Cereal Chem, 2003, 80:175-183.

    [6] 韦存虚, 张军, 周卫东, 陈义芳, 许如根. 大麦胚乳小淀粉粒的发育[J]. 作物学报, 2008, 34(10):1788-1796.

    Wei CX, Zhang J, Zhou WD, Chen YF, Xu RG. Development of small starch granule in barley endosperm[J]. Acta Agronomica Sinica, 2008, 34(10):1788-1796.

    [7] 王忠. 水稻的开花与结实[M]. 北京:科学出版社, 2015.
    [8] 李栋梁, 荆彦平, 李小刚, 顾蕴洁, 王忠. 高粱胚乳细胞与母体组织发育关系的研究[J]. 中国农业科学, 2014, 47(17):3336-3347.

    Li DL, Xing YP, Li XG, Gu YJ, Wang Z. Investigation of sorghum endosperm cell development and the relationship with its maternal tissue[J]. Scientia Agricultura Sinica, 2014, 47(17):3336-3347.

    [9] 王莉, 潘烨, 王永平, 汪琼, 徐小勇, 等. 银杏种实生长发育过程中胚乳淀粉体发育观察[J]. 果树学报, 2007, 24(5):692-695.

    Wang L, Pan Y, Wang YP, Wang Q, Xu XY, et al. Observation on amyloplast in endosperm during development of seeds in Ginkgo biloba[J]. Journal of Fruit Science, 2007, 24(5):692-695.

    [10] 邢世岩, 李士美, 韩晨静, 张芳, 唐海霞. 叶籽银杏胚乳淀粉特性及其系统学意义[J]. 园艺学报, 2010, 37(30):345-354.

    Xing SY, Li SM, Han CJ, Zhang F, Tang HX. Comparison on starch characters in endosperm of Ginkgo biloba var. epiphylla Mak. and its systematic significance[J]. Acta Horticulturae Sinica, 2010, 37(30):345-354.

    [11]

    Zheng Y, Zhang HX, Yao C, Hu LL, Peng YJ, et al. Study on physicochemical and in-vitro enzymatic hydrolysis properties of ginkgo (Ginkgo biloba) starch[J]. Food Hydrocolloid, 2015, 48:312-319.

    [12]

    Hu LL, Zheng Y, Peng YJ, Yao C, Zhang HX. The optimization of isoamylase processing conditions for the preparation of high-amylose ginkgo starch[J]. Int J Bio Macromol, 2016, 86:105-111.

    [13]

    Cai J, Cai C, Man J, Xu B, Wei C. Physicochemical properties of ginkgo kernal starch[J]. Int J Food Prop, 2015, 18(2):380-391.

    [14]

    Lu Y, Zhang XM, Yang Y, Qi Y, Hao WZ, et al. Relationship between structure and physicochemical properties of ginkgo starches from seven cultivars[J]. Food Chem, 2019. Doi: https://doi.org/10.1016/j.foodchem.2019.125082.

    [15]

    Wang T, Wu C, Fan G, Li T, Gong H, et al. Ginkgo biloba extracts-loaded starch nano-spheres:Preparation, characterization, and in vitro release kinetics[J]. Int J Bio Macromol, 2018, 106:148-157.

    [16] 王忠, 顾蕴洁, 陈刚, 熊飞, 李运祥. 稻米的品质和影响因素[J]. 分子植物育种, 2003, 1(2):231-241.

    Wang Z, Gu YJ, Chen G, Xiong F, Li YX. Rice quality and its affecting factors[J]. Molecular Plant Breeding, 2003, 1(2):231-241.

    [17]

    Zhou ZY, Zheng SL. The missing link in ginkgo evolution[J]. Nature, 2003, 423(6942):821-822.

    [18] 潘烨, 王莉, 陆彦, 陈鹏. 银杏种核品质的形成及其调控研究进展[J]. 江苏农业科学, 2008, 2:1-5.

    Pan Y, Wang L, Lu Y, Chen P. Research progress on the formation and regulation of the kernel quality in ginkgo[J]. Jiangsu Agricultural Sciences, 2008, 2:1-5.

    [19]

    Wang L, Wang D, Lin MM, Lu Y, Jing XX, et al. An embryological study and systematic significance of the primitive gymnosperm Ginkgo biloba[J]. J Syst Evol, 2011, 49(4):353-361.

    [20]

    Lu Y, Wang L, Wang D, Wang Y, Zhang M, et al. Male cone morphogenesis, pollen development and pollen dispersal mechanism in Ginkgo biloba L.[J]. Can J Plant Sci, 2011, 91(6):971-981.

    [21] 武彦芳, 张建, 雷静, 许锋, 吴丽丽. 银杏营养器官解剖结构的观察[J]. 植物科学学报, 2016, 34(2):175-181.

    Wu YF, Zhang J, Lei J, Xu F, Wu LL. Anatomical structure of vegetative organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2):175-181.

    [22] 陆彦, 王莉, 潘烨, 陈鹏, 王頔, 等. 银杏雌配子体发育过程中淀粉和蛋白质的积累与代谢[J]. 园艺学报, 2011, 38(1):15-24.

    Lu Y, Wang L, Pan Y, Chen P, Wang D, et al. Research on starch and protein accumulation and metabolism during the development of the Ginkgo biloba female game-tophyte[J]. Acta Horticulturae Sinica, 2011, 38(1):15-24.

    [23] 路兆庚, 骆凯歌, 李卫星, 潘烨, 张敏, 等. 银杏胚乳游离核分裂与细胞化过程观察[J]. 植物研究, 2015, 35(2):165-171.

    Lu ZG, Luo KG, Li WX, Pan Y, Zhang M, et al. Observation process of free nuclei division and cellularization in Ginkgo biloba L. endosperm[J]. Bulletin of Botanical Research, 2015, 35(2):165-171.

    [24] 王莉, 王永平, 汪琼, 潘烨, 金飚, 等. 银杏胚珠发育进程的解剖学研究[J]. 西北植物学报, 2007, 27(7):1349-1356.

    Wang L, Wang YP, Wang Q, Pan Y, Jin B, et al. Anatomical study of development of ovule in Ginkgo biloba L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(7):1349-1356.

    [25] 陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 等. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1):119-126.

    Lu Y, Qi Y, Zhang XM, Chen YF, Wang L, et al. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1):119-126.

    [26]

    Xu A, Qiu J, Yin Z, Wei C. Morphological characteristics of endosperm in different regions of maize kernels with different vitreousness[J]. J Cereal Sci, 2019, 87:273-279.

    [27] 李栋梁, 李小刚, 顾蕴洁, 王忠. 不同类型水稻品种胚乳发育的研究[J]. 中国农业科学, 2014, 47(19):3757-3768.

    Li DL, Li XG, Gu YJ, Wang Z. Investigation of endosperm cell development of different rice varieties[J]. Scientia Agricultura Sinica, 2014, 47(19):3757-3768.

    [28] 熊飞, 王忠, 朱方莉, 张志恒. 不同类型玉米颖果主要品质性状比较[J]. 作物学报, 2005, 31(2):259-261.

    Xiong F, Wang Z, Zhu FL, Zhang ZH. A Comparative study on the main quality characters of caryopsis in diffe-rent types of maize[J]. Acta Agronomica Sinica, 2005, 31(2):259-261.

    [29] 潘爱芳. 苏铁(Cycas revoluta Thunb.)种子的胚与胚乳解剖结构研究[J]. 植物科学学报, 2012, 30(6):618-623.

    Pan AF. Embryo and endosperm structures of Cycas revoluta Thunb. seeds[J]. Plant Science Journal, 2012, 30(6):618-623.

    [30]

    Miao M, Jiang H, Jiang B, Cui SW, Jin Z, et al. Structure and functional properties of starches from Chinese ginkgo (Ginkgo biloba L.) nuts[J]. Food Res Int, 2012, 49:303-310.

    [31] 韦存虚, 张军, 周卫东, 陈义芳, 刘巧泉. 水稻胚乳淀粉体被膜的降解和复粒淀粉粒概念的探讨[J]. 中国水稻科学, 2008, 22(4):377-384.

    Wei CX, Zhang J, Zhou WD, Chen YF, Liu QQ. Degradation of amyloplast envelope and discussion on the concept of compound starch granule in rice endosperm[J]. Chinese Journal of Rice Science, 2008, 22(4):377-384.

    [32]

    Whatley JM. A suggested cycle of plastid developmental interrelationships[J]. New Phytol, 1978, 80(3):489-502.

    [33]

    Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals[J]. J Exp Bot, 2019, 70(3):711-784.

    [34]

    Bahaji A, Munoz FJ, Segui-Simarro JM, Camacho-Fernandez C, Rivas-Sendra A, et al. Mitochondrial Zea mays Brittle1-1 is a major determinant of the metabolic fate of incoming sucrose and mitochondrial function in developing maize endosperms[J]. Front Plant Sci, 2019, 10:242.

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  807
  • HTML全文浏览量:  5
  • PDF下载量:  524
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-08-05
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-12-27

目录

    /

    返回文章
    返回