高级检索+

两种光照处理下苦荞芽菜的代谢物分析

赵佳利, 张晓娜, 黄娟, 李洪有, 石桃雄, 陈庆富, 邓娇

赵佳利, 张晓娜, 黄娟, 李洪有, 石桃雄, 陈庆富, 邓娇. 两种光照处理下苦荞芽菜的代谢物分析[J]. 植物科学学报, 2019, 37(6): 808-819. DOI: 10.11913/PSJ.2095-0837.2019.60808
引用本文: 赵佳利, 张晓娜, 黄娟, 李洪有, 石桃雄, 陈庆富, 邓娇. 两种光照处理下苦荞芽菜的代谢物分析[J]. 植物科学学报, 2019, 37(6): 808-819. DOI: 10.11913/PSJ.2095-0837.2019.60808
Zhao Jia-Li, Zhang Xiao-Na, Huang Juan, Li Hong-You, Shi Tao-xiong, Chen Qing-Fu, Deng Jiao. Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination[J]. Plant Science Journal, 2019, 37(6): 808-819. DOI: 10.11913/PSJ.2095-0837.2019.60808
Citation: Zhao Jia-Li, Zhang Xiao-Na, Huang Juan, Li Hong-You, Shi Tao-xiong, Chen Qing-Fu, Deng Jiao. Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination[J]. Plant Science Journal, 2019, 37(6): 808-819. DOI: 10.11913/PSJ.2095-0837.2019.60808
赵佳利, 张晓娜, 黄娟, 李洪有, 石桃雄, 陈庆富, 邓娇. 两种光照处理下苦荞芽菜的代谢物分析[J]. 植物科学学报, 2019, 37(6): 808-819. CSTR: 32231.14.PSJ.2095-0837.2019.60808
引用本文: 赵佳利, 张晓娜, 黄娟, 李洪有, 石桃雄, 陈庆富, 邓娇. 两种光照处理下苦荞芽菜的代谢物分析[J]. 植物科学学报, 2019, 37(6): 808-819. CSTR: 32231.14.PSJ.2095-0837.2019.60808
Zhao Jia-Li, Zhang Xiao-Na, Huang Juan, Li Hong-You, Shi Tao-xiong, Chen Qing-Fu, Deng Jiao. Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination[J]. Plant Science Journal, 2019, 37(6): 808-819. CSTR: 32231.14.PSJ.2095-0837.2019.60808
Citation: Zhao Jia-Li, Zhang Xiao-Na, Huang Juan, Li Hong-You, Shi Tao-xiong, Chen Qing-Fu, Deng Jiao. Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination[J]. Plant Science Journal, 2019, 37(6): 808-819. CSTR: 32231.14.PSJ.2095-0837.2019.60808

两种光照处理下苦荞芽菜的代谢物分析

基金项目: 

贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]128);贵州师范大学资助博士科研项目(11904/0516026);贵州省科学技术基金计划(黔科合基础[2019]1235号);贵州省科技计划项目(黔科合LH字[2017]7355号);贵州省荞麦工程技术研究中心(黔科合农G字[2015]4003号);贵州省荞麦种质资源保育及创新重点实验室建设基金(黔教合KY字[2017]002);国家自然科学基金项目(31760419)。

详细信息
    作者简介:

    赵佳利(1995-),男,硕士研究生,研究方向为植物生理及分子生物学(E-mail:zhaojl2014@qq.com)。

    通讯作者:

    邓娇,E-mail:ddj613@163.com

  • 中图分类号: Q946;S517

Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination

Funds: 

This work was supported by grants from the Development Project of Young Science and Technology Talents of Guizhou Education Department (QianJiaoHe KY[2018]128), Guizhou Normal University Funded Doctoral Research Project (11904/0516026), Guizhou Science and Technology Fund Plan (QianKeHe Ji[2019]1235), Guizhou Science and Technology Plan Project (QianKeHe LH Zi[2017]7355), Guizhou Buckwheat Engineering Technology Research Center (QianKeHe G Zi[2015]4003), Earmarked Fund for Construction of the Key Laboratory for Conservation and Innovation of Buckwheat Germplasm in Guizhou (QianJiaoHe KY Zi[2017]002), and National Natural Science Foundation of China (31760419).

  • 摘要: 以黑暗和光照处理下苦荞(Fagopyrum tataricum(L.)Gaertner)品种‘晋荞2号’种子萌发所得的芽菜为材料,利用气相色谱-质谱联用分析技术,对两种处理下苦荞芽菜代谢产物的差异进行分析。结果显示,两种光照处理下苦荞芽菜的代谢产物差异明显,在芽菜中共检测出383种代谢产物,其中不同光照处理造成了137种代谢产物的显著差异,他们主要集中在氨基酸及其衍生物、糖类及其衍生物、芳香族化合物和脂肪酸等。除氨基酸及其衍生物外,其余绝大多数差异代谢物的含量在光照组芽菜中较高;KEGG代谢通路分析结果表明,差异代谢物富集于136条物质代谢通路。说明光照能够促进苦荞芽菜多数营养代谢物的生成和积累,营养组分较暗培养更为丰富,营养价值更高。
    Abstract: Fagopyrum tataricum (L.) Gaertner (variety ‘Jinqiao 2’) sprouts obtained from seed germination under dark and light treatment were analyzed by gas chromatography-mass spectrometry to determine differences in metabolite content. Results showed that tartary buckwheat sprout metabolites were significantly different under the two light treatments. A total of 383 metabolites were detected, among which 137 metabolites were significantly different under the different light treatments, particularly amino acids and their derivatives, carbohydrates and their derivatives, aromatic compounds, and fatty acids. Except for amino acids and their derivatives, all other differential metabolites were found at a higher concentration in the light-irradiated sprouts. KEGG metabolic pathway analysis showed that the different metabolites were enriched in 136 metabolic pathways. Thus, our study showed that light promoted the production and accumulation of most nutrient metabolites in F. tataricum sprouts, and the nutrient components were richer and more valuable than those under dark culture.
  • [1] 陈庆富. 荞麦属植物科学[M]. 北京:科学出版社, 2012.
    [2] 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(3):1-7.

    Chen QF. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. Journal of Guizhou Normal University (Natural Sciences Edition), 2018, 36(3):1-7.

    [3] 杨丽娟, 陈庆富. 荞麦属植物遗传育种的最新研究进展[J]. 种子, 2018, 37(4):52-58.

    Yang LJ, Chen QF. Recent advances in genetic breeding of buckwheat[J]. Seed, 2018, 37(4):52-58.

    [4] 侯雪梅, 袁仲. 荞麦的营养保健功能与开发利用[J]. 农产品加工, 2014(1):73-75.

    Hou XM, Yuan Z. The nutrition health function and exploration of buckwheat[J]. Academic Periodical of Farm Pro-ducts Processing, 2014(1):73-75.

    [5] 聂薇, 李再贵. 苦荞麦营养成分和保健功能[J]. 粮油食品科技, 2016, 24(1):40-45.

    Nie W, Li ZG. Nutritional components and prophylactic values of tartary buckwheat[J]. Science and Technology of Cereals, Oils and Foods, 2016, 24(1):40-45.

    [6] 黄凯丰, 时政, 欧腾, 韩承华, 陈敏, 浦琳佳. 荞麦苗的营养保健成分分析[J].北方园艺, 2011(10):22-24.

    Huang KF, Shi Z, Ou T, Han CH, Chen M, Pu LJ. Analysis on nutrition and healthy components of buckwheat sprout[J]. Northern Horticulture, 2011(10):22-24.

    [7] 陈鹏, 李玉红, 刘春梅, 董育红. 荞麦芽菜营养成分分析评价[J]. 园艺学报, 2003(6):739-741.

    Chen P, Li YH, Liu CM, Dong YH. Nutrient evaluation of buckwheat seedling[J]. Acta Horticulturae Sinica, 2003(6):739-741.

    [8] 阮景军, 陈惠, 吴琦, 邵继荣, 杨婉身. 荞麦中的蛋白质[J]. 生命的化学, 2008(1):111-113.

    Ruan JJ, Chen H, Wu Q, Shao JR, Yang WS. Protein in buckwheat[J]. Chemistry of Life, 2008(1):111-113.

    [9] 邓娇, 陈庆富, 张启迪, 汪燕, 梁成刚, 黄娟. 苦荞全基因组11S种子储藏蛋白基因的鉴定及表达分析[J]. 植物科学学报, 2017, 35(6):856-864.

    Deng J, Chen QF, Zhang QD, Wang Y, Liang CG, Huang J. Genome-wide identification and expression analysis of 11S seed storage protein genes in tartary buckwheat (Fagopyrum tataricum)[J]. Plant Science Journal, 2017, 35(6):856-864.

    [10] 赵利霞, 谭军, 潘思轶, 汪兴平. 荞麦苗的开发利用与前景展望[J]. 食品科学, 2006(4):267-269.

    Zhao LX, Tan J, Pan SY, Wang XP. The utilization and good prospects for buckwheat seedling[J]. Food Science, 2006(4):267-269.

    [11] 张雨薇, 景梦琳, 李小平, 魏思凡, 胡新中, 等. 不同种荞麦发芽前后蛋白质及氨基酸变化主成分分析与综合评价[J]. 食品与发酵工业, 2017, 43(7):214-221.

    Zhang YW, Jing ML, Li XP, Wei SF, Hu XZ, et al. Principal component analysis and comprehensive evaluation of protein and amino acid in different varieties of buckwheat and buckwheat sprout[J]. Food and Fermentation Industries, 2017, 43(7):214-221.

    [12] 周秦, 朱一丹, 朱璞, 郭子卿. 光质调控对芽苗菜生长和品质影响的研究[J].上海蔬菜, 2017(1):61-63.

    Zhou Q, Zhu YD, Zhu P, Guo ZQ. Effects of light quality control on growth and quality of sprouts[J]. Shanghai Vegetables, 2017(1):61-63.

    [13] 张颖. 绿瓣大豆芽菜生产技术研究[D]. 南京:南京农业大学, 2008.
    [14] 胡丽雪, 彭镰心, 黄凯丰, 向达兵, 赵江林, 赵钢. 温度和光照对荞麦影响的研究进展[J]. 成都大学学报(自然科学版), 2013, 32(4):320-324.

    Hu LX, Peng LX, Huang KF, Xiang DB, Zhao JL, Zhao G. Effects of temperature and light on buckwheat[J]. Journal of Chengdu University(Natural Science Edition), 2013, 32(4):320-324.

    [15] 丁映, 卢扬. 荞麦芽苗菜的开发利用与生产技术[J]. 现代农业科技, 2017(18):65.

    Ding Y, Lu Y. Development, utilization and production technology of buckwheat sprouts[J]. Modern Agricultural Science and Technology, 2017(18):65.

    [16] 李跃森, 吴水金, 赖正锋, 张少平. 8种原生蔬菜氨基酸组成及营养评价[J]. 福建农业学报, 2013, 28(10):1007-1011.

    Li YS, Wu SJ, Lai ZF, Zhang SP. Amino acid composition and nutrition evaluation for eight original ecology grown vegetable species[J]. Fujian Journal of Agricultural Sciences, 2013, 28(10):1007-1011.

    [17] 刘富发, 杨晓艳, 豪富华, 王玉兰, 唐惠儒. 莽草酸途径中26种代谢物的NMR谱归属[J]. 波谱学杂志, 2017, 34(3):311-322.

    Liu FF, Yang XY, Hao FH, Wang YL, Tang HR. Assignments of 1H and 13C NMR signals of 26 metabolites associated with the shikimate pathway[J]. Chinese Journal of Magnetic Resonance, 2017, 34(3):311-322.

    [18] 姜春丽, 苏新堯, 许亚春, 吴而已, 师玉华, 等. 光照对药食同源植物苦荞麦种子中原花青素积累关键酶FtANR、FtLAR基因表达的影响[J]. 中国中药杂志, 2018, 43(3):469-477.

    Jiang CL, Su XY, Xu YC, Wu EY, Shi YH, et al. Influence of light on gene expression of key synthesis enzyme genes FtANR and FtLAR about proanthocyanidin in seeds of homologous plant of food and medicine Fagopyrum tataricum[J]. China Journal of Chinese Materia Medica, 2018, 43(3):469-477.

    [19] 刘华, 张晓娟. 原子吸收法测定韭菜、韭黄中的几种金属元素[J]. 食品工业, 2016, 37(7):260-262.

    Liu H, Zhang XJ. Determination of trace elements in leek and chives by atomic absorption spectrometry[J]. The Food Industry, 2016, 37(7):260-262.

    [20] 蹇黎, 朱利泉. 贵州几种葱属植物的营养成分比较分析[J]. 长江蔬菜, 2009(2):30-32.

    Jian L, Zhu LQ. Comparative analysis of the nutritional components of several Allium crops in Guizhou province[J]. Journal of Changjiang Vegetables, 2009(2):30-32.

    [21] 刘华, 张晓娟, 杨燕燕, 宋应华. 韭菜和韭黄总黄酮的提取及抗氧化活性研究[J]. 粮食与油脂, 2017, 30(5):33-37.

    Liu H, Zhang XJ, Yang YY, Song YH. Study on extraction of total flavonoids and antioxidant activity in leek and chive[J]. Cereals and Oils, 2017, 30(5):33-37.

    [22]

    Nam TG, Kim DO, Eom SH. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts[J]. Food Sci Biotechnol, 2018, 27(1):169-176.

    [23]

    Lee DG, Jang IS, Yang KE, Yoon SJ, Baek S, et al. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes[J]. Acta Pharm, 2016, 66(2):297-302.

    [24]

    Świeca M. Potentially bioaccessible phenolics, antioxidant activity and nutritional quality of young buckwheat sprouts affected by elicitation and elicitation supported by phenylpropanoid pathway precursor feeding[J]. Food Chem, 2016, 192:625-632.

    [25] 杨光丽, 雷兴华, 林华容, 樊燕, 刘永文, 等. 芽菜型荞麦新品种酉荞3号的选育[J]. 种子, 2017, 36(7):110-113.

    Yang GL, Lei XH, Lin HR, Fan Y, Liu YW, et al. Breeding of sprouts type buckwheat new varieties Youqiao No.3[J]. Seed, 2017, 36(7):110-113.

    [26] 齐学会, 张晓燕, 鲁燕舞, 崔瑾. 光质和光周期对大豆芽苗菜生长及总酚类物质含量的影响[J]. 中国蔬菜, 2014(7):29-34.

    Qi XH, Zhang XY, Lu YW, Cui J. Effects of light quality and photoperiod on growth and total phenolics content of soybean sprouts[J]. China Vegetables, 2014(7):29-34.

    [27] 刘文科, 杨其长, 邱志平, 赵姣姣. LED光质对豌豆苗生长、光合色素和营养品质的影响[J]. 中国农业气象, 2012, 33(4):500-504.

    Liu WK, Yang QC, Qiu ZP, Zhao JJ. Effects of LED light quality on growth,photosynthetic pigments and nutritional quality of pea seedlings[J]. Chinese Journal of Agrome-teorology, 2012, 33(4):500-504.

    [28]

    Jeong H, Sung J, Yang J, Kim Y, Jeong HS, Lee J. Effect of sucrose on the functional composition and antioxidant capacity of buckwheat (Fagopyrum esculentum M.) sprouts[J]. J Funct Foods, 2018, 43:70-76.

    [29]

    Qin PY, Wei AC, Zhao DG, Yao Y, Yang XS, Dun BQ, Ren GX. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts[J]. Food Chem, 2017, 224:124-130.

  • 期刊类型引用(4)

    1. 徐哲,王进,郭兰萍,朱新焰,张磊,董家红,季鹏章. 光照胁迫对滇黄精多糖代谢酶活性的影响. 分子植物育种. 2024(10): 3374-3381 . 百度学术
    2. 白永亮,林柔敏,吴采瑛,何伟俊,曾荣,夏雨. 基于黄酮积累的苦荞萌发工艺优化及其抗氧化活性研究. 广东农业科学. 2022(04): 135-142 . 百度学术
    3. 司家屹,王祎琛,毛俊俨,杨秀云. 黑暗处理对百里香挥发性物质日变化的影响. 草地学报. 2021(01): 42-51 . 百度学术
    4. 闫海冰,张慧芳,冯帆,于兆友,杨秀清. 2种白刺对盐胁迫的代谢响应机制. 林业科学. 2021(01): 20-29 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  766
  • HTML全文浏览量:  2
  • PDF下载量:  549
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-07-14
  • 修回日期:  2019-07-28
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-12-27

目录

    /

    返回文章
    返回