高级检索+

大豆磷、硫转运蛋白研究进展

张雪琦, 蔡柏岩

张雪琦, 蔡柏岩. 大豆磷、硫转运蛋白研究进展[J]. 植物科学学报, 2019, 37(6): 828-834. DOI: 10.11913/PSJ.2095-0837.2019.60828
引用本文: 张雪琦, 蔡柏岩. 大豆磷、硫转运蛋白研究进展[J]. 植物科学学报, 2019, 37(6): 828-834. DOI: 10.11913/PSJ.2095-0837.2019.60828
Zhang Xue-Qi, Cai Bai-Yan. Advances in research on Glycine max (L.) Merr. phosphate and sulphate transporters[J]. Plant Science Journal, 2019, 37(6): 828-834. DOI: 10.11913/PSJ.2095-0837.2019.60828
Citation: Zhang Xue-Qi, Cai Bai-Yan. Advances in research on Glycine max (L.) Merr. phosphate and sulphate transporters[J]. Plant Science Journal, 2019, 37(6): 828-834. DOI: 10.11913/PSJ.2095-0837.2019.60828
张雪琦, 蔡柏岩. 大豆磷、硫转运蛋白研究进展[J]. 植物科学学报, 2019, 37(6): 828-834. CSTR: 32231.14.PSJ.2095-0837.2019.60828
引用本文: 张雪琦, 蔡柏岩. 大豆磷、硫转运蛋白研究进展[J]. 植物科学学报, 2019, 37(6): 828-834. CSTR: 32231.14.PSJ.2095-0837.2019.60828
Zhang Xue-Qi, Cai Bai-Yan. Advances in research on Glycine max (L.) Merr. phosphate and sulphate transporters[J]. Plant Science Journal, 2019, 37(6): 828-834. CSTR: 32231.14.PSJ.2095-0837.2019.60828
Citation: Zhang Xue-Qi, Cai Bai-Yan. Advances in research on Glycine max (L.) Merr. phosphate and sulphate transporters[J]. Plant Science Journal, 2019, 37(6): 828-834. CSTR: 32231.14.PSJ.2095-0837.2019.60828

大豆磷、硫转运蛋白研究进展

基金项目: 

国家自然科学基金项目(31570487)。

详细信息
    作者简介:

    张雪琦(1996-),女,硕士研究生,研究方向为修复生态学(E-mail:277957410@qq.com)。

    通讯作者:

    蔡柏岩,E-mail:caibaiyan@126.com

  • 中图分类号: Q943.2;949.751.9

Advances in research on Glycine max (L.) Merr. phosphate and sulphate transporters

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31570487).

  • 摘要: 磷、硫转运蛋白是大豆(Glycine max(L.)Merr.)体内磷、硫转运的重要载体,参与调节磷和硫酸盐的吸收与转运,对提高大豆的磷、硫利用效率至关重要。大豆磷转运蛋白可划分为Pht1、Pht2、Pht3、Pho1和Pho2 5大家族,目前对Pht1的研究最为深入。大豆14个Pht1家族可分为3个亚家族,他们对磷吸收和转运具有重要作用。大豆硫转运蛋白基因GmSULTR1;2b可在大豆根中特异性表达并被低硫胁迫诱导。本文基于大豆磷、硫的营养吸收、转运与利用过程中的相关性,对Pht1家族以及GmSULTR1;2b基因在大豆中的研究进展进行了综述,并对近年来大豆磷、硫转运蛋白的研究进展及未来的研究方向进行了展望。
    Abstract: Phosphate and sulphate transporters are important carriers involved in the absorption and transport of phosphate and sulfate in Glycine max (L.) Merr., which is essential for improving the utilization efficiency of phosphorus and sulfur in soybean. Phosphate transporter families are responsible for the absorption and movement of phosphate in plants and can be divided into five major families, i.e., Pht1, Pht2, Pht3, Pho1, and Pho2. At present, most research has been conducted on the Pht1 family of G. max phosphate transporters, which has indicated that Pht1 plays an important role in phosphate uptake and transport. The Pht1 family can be further divided into three subfamilies with 14 members. Furthermore, GmSULTR1;2b is a G. max sulphate transporter gene specifically expressed in roots and induced by low sulfur stress. Based on the correlation between nutrient absorption, translocation, and utilization of soybean phosphorus and sulfur, this paper reviews recent research progress on the Pht1 family and GmSULTR1;2b gene, as well as on phosphorus and sulfur transporters in soybean, with predictions given for future research directions.
  • [1]

    Zeng H, Zhang X, Xin Z, Pi E, Liang X, Zhu Y. Early transcriptomic response to phosphate deprivation in soybean leaves as revealed by RNA-sequencing[J]. Int J Mol Sci, 2018, 19(7):2145-2169.

    [2] 于洋. 基于GmFT2a和AtD-CGS基因组成型表达的开花期调控与大豆蛋白质量改良[D]. 北京:中国农业科学院, 2017.
    [3] 陈丽玉, 秦璐, 赵静, 廖红. 豆科植物Pht1磷转运蛋白家族基因的研究进展[J]. 大豆科学, 2015, 34(6):1057-1065.

    Chen LY, Qin L, Zhao J, Liao H. Advances inPht1 phosphate transporter family genes in legumes[J]. Soybean Science,2015, 34(6):1057-1065.

    [4] 关淑艳, 孙国旭, 徐丹丹, 魏晓禹, 孙苏, 马义勇. Pht1家族在几种植物中的研究进展[J]. 吉林农业大学学报, 2017, 39(4):379-385.

    Guan SY, Sun GX, Xu DD, Wei XY, Sun Su, Ma YY. Progress of researches on Pht1 family in plants[J]. Journal of Jilin Agricultural University, 2017, 39(4):379-385.

    [5] 陈国兴. 磷素营养水平对大豆光合作用及磷素吸收积累的影响[D]. 哈尔滨:东北农业大学, 2017.
    [6]

    Ceasar SA, Baker A, Muench SP, Ignacimuthu S, Baldwin SA. The conservation of phosphate-binding residues among PHT1 transporters suggests that distinct transport affinities are unlikely to result from differences in the phosphate-binding site[J]. Biochem Soc T, 2016, 44(5):1541-1548.

    [7]

    Ding Y, Zhou X, Zuo L, Wang H, Yu D. Identification and functional characterization of the sulfate transporter geneGmSULTR1;2b in soybean[J]. BMC Genomics, 2016, 17(1):373-392.

    [8] 唐晓鹿, 范少辉. 土壤磷有效性研究进展[C]. 成都:中国林业青年学术年会, 2010.
    [9]

    Shin H, Hwa-Soo S, Dewbre GR, Harrison MJ. Phosphate transport inArabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments[J]. Plant J, 2004, 39(4):629-642.

    [10]

    Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M. Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis[J]. Plant Cell, 2008, 20(9):2484-2496.

    [11] 苏爱国, 陈大清, 李亚男. 植物硫转运蛋白及其硒盐胁迫回应研究进展[J]. 长江大学学报(自然科学版), 2008, 5(1):70-73.

    Su AG, Chen DQ, Li YN. Advances in plant sulfur transporters and their response to selenium stress[J]. Journal of Yangtze University(Natural Science Edition), 2008, 5(1):70-73.

    [12] 吴宇, 高蕾, 曹民杰. 植物硫营养代谢、调控与生物学功能[J]. 植物学报, 2007, 24(6):735-761.

    Wu Y, Gao L, Cao MJ. Sulphur metabolism, regulation and biological function of plants[J]. Chinese Bulletin of Botany, 2007, 24(6):735-761.

    [13]

    Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ. Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation[J]. Funct Plant Biol, 2008, 35:318-327.

    [14]

    Maruyamanakashita A, Nakamura Y, Yamaya T. Regulation of high-affinity sulphate transporters in plants:Towards systematic analysis of sulphur signalling and regulation[J]. J Exp Bot, 2004, 55(404):1843-1849.

    [15]

    Lancilli C, Giacomini B, Lucchini G, Davidian JC, Cocucci M. Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1;2) genes in Brassica juncea[J]. BMC Plant Biol, 2014, 14(1):132-147.

    [16]

    Rao IM, Miles JW, Beebe SE, Rao IM, Miles JW, et al. Root adaptations to soils with low fertility and aluminium toxicity[J]. Annbot-London, 2016, 118(4):593-605.

    [17]

    Fan C, Wang X, Hu R. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L.[J]. BMC Plant Biol, 2013, 13(1):48.

    [18]

    Ceasar SA, Baker A, Ignacimuthu S. Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel agrobacterium-mediated transformation procedure[J]. Sci Rep-UK, 2017, 7(1):14064-14080.

    [19]

    Qin L, Guo Y, Chen L, Liang R, Gu M, et al. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean[J]. PLoS One, 2012, 7(10):e47726.

    [20]

    Hatorangan MR, Sentausa E, Wijaya GY. In silico identification of cis-regulatory elements of phosphate transporter genes in rice (Oryza sativa L.)[J].Journal of Crop Science and Biotechnology, 2009, 12(1):25-30.

    [21]

    Javot H, Penmetsa RV, Breuillin F. Medicago truncatulamtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis[J]. Plant J, 2011, 68(6):954-965.

    [22]

    Yang WT, Baek D, Yun DJ. RiceOsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter[J]. PLoS One, 2018, 13(3):e0194628.

    [23]

    Smith SE, Read DJ. Mycorrhizal symbiosis[J].Q Rev Biol, 2008, 3(3):273-281.

    [24]

    Smith SE, Smith FA, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiol, 2003, 133(1):16-20.

    [25] 王萍, 陈爱群, 余玲, 徐国华. 植物磷转运蛋白基因及其表达调控的研究进展[J]. 植物营养与肥料学报, 2006, 12(4):584-591.

    Wang P, Chen AQ, Yu L, Xu GH. Advance of plant phosphate transporter genes and their regulated expression[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4):584-591.

    [26]

    Nussaume L, Kanno S, Javot H, Marin E, Pochon N, et al. Phosphate import in plants:Focus on the PHT1 transporters[J]. Front Plant Sci, 2011, 2:83.

    [27]

    Grunwald U, Guo W, Fischer K, Isayenkov S, Hause B. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots[J]. Planta, 2009, 229(5):1023-1034.

    [28]

    Antony CS, Angela H, Alison B, Baldwin SA. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelvePHT1 family phosphate transporters in foxtail millet (Setaria italica)[J]. PLoS One, 2014, 9(9):e108459.

    [29]

    Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales[J]. Annu Rev Plant Biol, 2011, 62(1):227-250.

    [30]

    Rausch C, Zimmermann P, Amrhein N, Bucher M. Expression analysis suggests novel roles for the plastidic phosphate transporterPht2;1 in auto-and heterotrophic tissues in potato and Arabidopsis[J]. Plant J, 2010, 39(1):13-28.

    [31]

    Tamura Y, Kobae Y, Mizuno T, Hata S. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean[J]. Biosci Biotech Bioch, 2012, 76(2):309-313.

    [32] 董旭, 王雪, 石磊, 蔡红梅, 徐芳森, 丁广大. 植物磷转运子PHT1家族研究进展[J]. 植物营养与肥料学报, 2017, 23(3):799-810.

    Dong X, Wang X, Shi L, Cai HM, Xu FS, Ding GD. Advances in plant PHT1 phosphate transporter family research[J]. Plant Nutrition and Fertilizer Science, 2017, 23(3):799-810.

    [33] 杨存义, 刘灵, 沈宏, 严小龙. 植物Pht1家族磷转运子的分子生物学研究进展[J]. 分子植物育种, 2006, 4(2):153-159.

    Yang CY, Liu ling, Shen H, Yan XL. Advances in the molecular biology of Pht1 family phosphate transporters in plants[J]. Molecular Plant Breeding, 2006, 4(2):153-159.

    [34]

    Qin L, Zhao J, Tian J, Chen L, Sun Z, Guo Y. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiol, 2012, 159(4):1634-1643.

    [35]

    Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X.OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiol, 2008, 146(4):1673-1686.

    [36]

    Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing[J]. Plant Soil, 2016, 398(1-2):207-227.

    [37]

    Sha A, Chen Y, Ba H, Shan Z, Zhang X, Wu X. Identification of Glycine max microRNAs in response to phosphorus deficiency[J]. J Plant Biol, 2012, 55(4):268-280.

    [38]

    Song H, Yin Z, Chao M. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1, in soybean[J]. Plant Cell Environ, 2014, 37(2):462-472.

    [39]

    Inoue Y, Kobae Y, Omoto E. The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves[J]. Plant Cell Physiol, 2014, 55(12):2102-2011.

    [40]

    Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants:from soil to cell[J]. Plant Physiol, 1998, 116:447-453.

    [41]

    Abel S, Ticconi CA, Delatorre CA. Phosphate sensing in higher plants[J]. Physiol Plantarum, 2010, 115(1):1-8.

    [42]

    Buchner P, Takahashi H, Hawkesford MJ. Plant sulphate transporters:co-ordination of uptake, intracellular and long-distance transport[J]. J Exp Bot, 2004, 55(404):1765-1773.

    [43]

    Hawkesford MJ. Transporter gene families in plants:the sulphate transporter gene family-redundancy or specialization?[J]. Physiol Plantarum, 2010, 117(2):155-163.

    [44] 胡玉荣, 岳川, 周超, 黄玉婷, 曹红利, 等. 茶树硫酸盐转运蛋白基因CsSUL3.5的克隆与表达分析[J]. 园艺学报, 2015, 42(11):2306-2314.

    Hu YR, Yue C, Zhou C, Huang YT, Cao HL, et al. Cloning and expression analysis of sulfate transporterCsSUL3.5 gene in tea plant[J]. Acta Horticulturae Sinica, 2015, 42(11):2306-2314.

    [45]

    Vatansever R, Koc I, OzyigitII, Sen U, Filiz E. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.)[J]. Planta, 2016, 244(6):1167-1183.

    [46] 周小琼, 丁一琼, 左丽, 喻德跃. 大豆硫转运蛋白基因GmSULTR1;2b启动子的克隆及活性分析[J]. 中国农业科学, 2015, 48(8):1650-1659.

    Zhou XQ, Ding YQ, Zuo Li, Yu DY. Cloning and activity analysis of the promoter of sulfate transporter geneGmSULTR1;2b[J]. Scientia Agricultura Sinica, 2015, 48(8):1650-1659.

    [47]

    Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC. Differential regulation of the expression of two high-affinity sulfate transporters,SULTR1.1 and SULTR1.2, in Arabidopsis[J]. Plant Physiol, 2008, 147(2):897-911.

    [48]

    Jefferson R. GUS fusions β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. Embo J, 1987, 6(13):3901-3907.

    [49]

    Murray MG, Thompson WF. Rapid isolation of high mole-cular weight plant DNA[J]. Nucleic Acids Res, 1980, 8(19):4321-4326.

    [50]

    Watanabetakahashi A, Blakekalff M. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. Plant J, 2010, 23(2):171-182.

    [51]

    Lappartient A. Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. Plant J, 1999, 18(1):89-95.

    [52]

    Wang G, Zeng H, Hu X, Zhu Y, Chen Y, Shen C. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean[J]. Plant Soil, 2015, 386(1-2):205-221.

    [53]

    Jackson TL, Baker GW, Wilks FR Jr, Popov VA, Mathur J, Benfey PN. Large cellular inclusions accumulate in Arabidopsis roots exposed to low-sulfur conditions[J]. Plant Physiol, 2015, 168(4):1573-1589.

    [54]

    Khan MS, Zaidi A, Ahmad E. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms[M]//Khan MS, Zaidi A, Musarrat J, eds. Phosphate Solubilizing Microorganisms. Switzerland:Springer International Publishing, 2014:31-62.

    [55]

    Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism[J]. Front Plant Sci, 2014, 5(442):1-16.

  • 期刊类型引用(2)

    1. 杨菁华,高举,李文芳,刘骥,霍嘉兴,任振硕,李龙,陈佰鸿,毛娟,马宗桓. 苹果PDHB-1基因家族的鉴定与表达分析. 生物工程学报. 2023(12): 4965-4981 . 百度学术
    2. 王寻,张天恩,由春香,韩月彭,王小非,郝玉金. 蔷薇科苹果、梨和桃RKD转录因子家族比较分析. 植物生理学报. 2020(10): 2132-2148 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  792
  • HTML全文浏览量:  12
  • PDF下载量:  654
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-05-16
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-12-27

目录

    /

    返回文章
    返回