Variation in genome size and stomatal traits among three Sorbus species
-
摘要: 以糍粑沟花楸(Sorbus cibagouensis H. Peng & Z. J. Yin)、大理花楸(S. hypoglauca(Cardot)Hand.-Mazz.)和川滇花楸(S. vilmorinii C. K. Schneid.)为材料,采用流式细胞术对其基因组大小及倍性进行检测分析,同时应用光学显微镜和扫描电子显微镜对其气孔特征进行观察。结果显示,3种花楸属植物的基因组大小和倍性、气孔特征均存在一定差异。糍粑沟花楸、大理花楸和川滇花楸的基因组大小分别为:(1.480±0.039)pg、(1.513±0.041)pg、(2.675±0.065)pg,在此基础上推断糍粑沟花楸和大理花楸为二倍体、川滇花楸为四倍体植物。显微镜观测发现:3种花楸属植物的气孔器均分布于叶的下表皮,气孔不下陷,保卫细胞无“T”型加厚结构,气孔类型为无规则形;糍粑沟花楸和川滇花楸的气孔器外拱盖光滑,而大理花楸气孔器外拱盖具有短棒状蜡质纹饰;3种植物的气孔器大小存在极显著差异。研究结果表明花楸属植物的基因组大小与倍性呈显著正相关,可用于推断植物的倍性;而气孔器大小和密度与倍性的相关性不大,但气孔特性在种间变化显著,可为种的鉴定提供科学的理论依据。Abstract: In this paper, ploidy in Sorbus cibagouensis H. Peng & Z. J. Yin, S. hypoglauca (Cardot) Hand.-Mazz., and S. vilmorinii C. K. Schneid was assessed by means of relative genome size using flow cytometry. At the same time, stomatal characteristics were observed by light microscopy and scanning electron microscopy. Based on flow cytometry profiles, the genome sizes of S. cibagouensis, S. hypoglauca, and S. vilmorinii were (1.480±0.039) pg, (1.513±0.041) pg, and (2.675±0.065) pg respectively. The cytotypes of S. cibagouensis (2x), S. hypoglauca (2x), and S. vilmorinii (4x) were also revealed. The stomata of the three Sorbus species did not sink and the guard cells had no ‘T’ type thickening structure. Furthermore, the stomata were distributed in the lower epidermis of the leaves and were anomocytic type. The outer stomatal rim ornamentation of S. cibagouensis and S. vilmorinii was smooth, whereas that of S. hypoglauca was short rod waxy. These results showed that there were significant differences in stomatal size among the three Sorbus species. Furthermore, genome size was positively associated with the ploidy of Sorbus, which could therefore be used for ploidy identification. Although the correlation between stomatal traits and ploidy was not significant, the stomatal characteristics changed significantly among species, which could provide a theoretical basis for species identification.
-
Keywords:
- Genome size /
- Ploidy /
- Stomatal traits /
- Sorbus
-
-
[1] 俞德浚, 陆玲娣. 中国植物志:第36卷:花楸属Sorbus L.[M]. 北京:科学出版社, 1974. [2] 魏杰, 石佳, 侯潇, 鞠政楠. 欧洲花楸的化学成分及药理作用研究进展[J]. 辽宁大学学报(自然科学版), 2014, 41(4):362-368. Wei J, Shi J, Hou X, Ju ZN. Research progress of chemical components and pharmacological activities in Sorbus aucuparia[J]. Journal of Liaoning University (Natural Sciences Edition), 2014, 41(4):362-368.
[3] Aldasoro JJ, Aedo C, Navarro C, Garmendia FM. The genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa:Morphological analysis and systematics[J]. Syst Bot, 1998, 23(2):189-212.
[4] Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, et al. Hybridization and polyploidy as drivers of conti-nuing evolution and speciation in Sorbus[J]. Mol Ecol, 2010, 19(8):1675-1690.
[5] Hamston TJ, de Vere N, King RA, Pellicer J, Fay MF, et al. Apomixis and hybridization drives reticulate evolution and phyletic differentiation in Sorbus L.:implications for conservation[J]. Front Plant Sci, 2018, 9:1796.
[6] Lu LT, Spongberg SA. Sorbus Linnaeus[M]//Wu ZY, Raven PH, Hong DY, eds. Flora of China:Vol 9. Beijing:Science Press, 2003.
[7] Phipps JB, Robertson KR, Smith PG, Rohrer JR. A checklist of the subfamily Maloideae (Rosaceae)[J]. Can J Bot, 1990, 68(10):2209-2269.
[8] Sennikov AN, Kurtto A. A phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe[M/OL]//Memoranda Soc. Fauna Flora Fennica:Vol. 93. Helsinki, 2017:1-78[2019-06-13].https://journal.fi/msff/issue/view/4564.
[9] Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry[J]. Nat Protoc, 2007, 2(9):2233-2244.
[10] Leitch AR, Leitch IJ. Ecological and genetic factors linked to contrasting genome dynamics in seed plants[J]. New Phytol, 2012, 194(3):629-646.
[11] Roberts AV, Gladis T, Brumme H. DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels[J]. Plant Cell Rep, 2009, 28(1):61-71.
[12] Rothleutner JJ, Friddle MW, Contreras RN. Ploidy levels, relative genome sizes, and base pair composition in Cotoneaster[J]. J Amer Soc Hort Sci, 2016, 141(5):457-466.
[13] Pellicer J, Clermont S, Houston L, Rich TCG, Fay MF. Cytotype diversity in the Sorbus complex (Rosaceae) in Britain:sorting out the puzzle[J]. Ann Bot, 2012, 110(6):1185-1193.
[14] Hajrudinović A, Frajman B, Sch nswetter P, Silajdžić E, Siljak-Yakovlev S, et al. Towards a better understanding of polyploid Sorbus (Rosaceae) from Bosnia and Herzegovina (Balkan Peninsula), including description of a novel, tetraploid apomictic species[J]. Bot J Linn Soc, 2015, 178(4):670-685.
[15] Uhrinová V, Zozomová-Lihová J, Bernátová D, Paule J, Paule L, et al. Origin and genetic differentiation of pink-flowered Sorbus hybrids in the western Carpathians[J]. Ann Bot, 2017, 120(2):271-284.
[16] Podwyszyńska M, Kruczyńska D, Machlańska A, Dyki B, Sowik I. Nuclear DNA content and ploidy level of apple cultivars including polish ones in relation to some morphological traits[J]. Acta Biol Cracov Ser Bot, 2016, 58(1):81-93.
[17] Caiza JC, Vargas D, Olmedo C, Arboleda M, Boada L, et al. Measurement of stomata and pollen as an indirect indicator of polyploidy in the genus Polylepis (Rosaceae) in Ecuador[J]. Ecología Austral, 2018, 28:175-187.
[18] Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, et al. Stomatal vs. genome size in angiosperms:the somatic tail wagging the genomic dog?[J]. Ann Bot, 2010, 105(4):573-584.
[19] Kong MJ, Pyohong SP. Leaf micromorphology of the Persicaria sect. Cephalophilon (Polygonaceae) and its systematic re-evaluation[J]. Phytaxa, 2019, 391(3):167-184.
[20] 秦燕, 王跃华, 孙卫邦, 陈高. 百部科植物叶表皮特征及其分类学意义[J]. 植物科学学报, 2018, 36(4):487-500. Qin Y, Wang YH, Sun WB, Chen G. Characters of the leaf epidermis of Stemonaceae and their taxonomical significance[J]. Plant Science Journal, 2018, 36(4):487-500.
[21] Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, et al. Repetitive sequences:cause for variation in genome size and chromosome morphology in the genus Oryza[J]. Plant Mol Biol, 1997, 35(6):791-799.
[22] Loureiro J, Rodriguez E, Dolezel J, Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry:a test with 37 species[J]. Ann Bot, 2007, 100(4):875-888.
[23] 王宇飞, 陶君容. 植物角质层分析术语新体系[J]. 植物学通报, 1991, 8(4):6-13. Wang YF, Tao JR. An introduction to a new system of terminology for plant cuticular analysis[J]. Chinese Bulletin of Botany, 1991, 8(4):6-13.
[24] Ludwig S, Robertson A, Rich TCG, Djordjević M, Cerović R, et al. Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus[J]. Ann Bot, 2013, 111(4):563-575.
[25] Nelson-Jones EB, Briggs D, Smith AG. The origin of intermediate species of the genus Sorbus[J]. Theor Appl Genet, 2002, 105(6-7):953-963.
[26] Bailey JP, Kay QON, McAllister H, Rich TCG. Chromosome numbers in Sorbus L. (Rosaceae) in the British Isles[J]. Watsonia, 2008, 27(1):69-72.
[27] H fer M, Meister A. Genome size variation in Malus species[J/OL]. Journal of Botany, 2010(2010-05-01)[2019-06-13]. DOI: 10.1155/2010/480873.
[28] Frajman B, Resětnick I, Weiss-Schneeweiss H, Ehrendorfer F, Sch nswetter P. Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae)[J]. BMC Evol Biol, 2015, 15(1):140.
[29] Talent N, Dickinson TA. Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae):evolutionary infe-rences from flow cytometry of nuclear DNA amounts[J]. Can J Bot, 2005, 83(83):1268-1304.
[30] 巢阳, 周燕. 通过测量叶片气孔鉴定月季染色体倍性的研究[J]. 北京农学报, 2015, 30(3):79-85. Chao Y, Zhou Y. Study on the identification of rose ploidy level through measuring leaf stomata[J]. Journal of Beijing University of Agriculture, 2015, 30(3):79-85.
[31] Zlesak DC. Pollen diameter and guard cell length as predictors of ploidy in diverse rose cultivars, species, and breeding lines[J]. Floriculture and Ornamental Biotechno-logy, 2009, 3(1):53-70.
[32] Čaňová I,Ďurkovič J, Hladká D, Lukáčik I. Changes in stomatal characteristics and photochemical efficiency during leaf development in six species of Sorbus[J]. Photosynthetica, 2012, 50(4):635-640.
[33] 张凌媛, 郭启高, 李晓林, 曾洪, 谭健民, 梁国鲁. 枇杷气孔保卫细胞叶绿体数目与倍性相关性研究[J]. 果树学报, 2005, 22(3):229-233. Zhang LY, Guo QG, Li Xl, Zeng H, Tan JM, Liang GL. Study on the relationship between the number of chloroplast in stomata guard cell and the ploidy of loguat cultivars[J]. Journal of Fruit Science. 2005, 22(3):229-233.
[34] Jordan GJ, Carpenter RJ, Koutoulis A, Price A, Brodribb TJ. Environmental adaptation in stomatal size independent of the effects of genome size[J]. New Phytol, 2015, 205(2):608-617.
[35] 单提波, 赵明辉, 武静莲, 徐正进. 不同气孔密度水稻的光合特征及Rubisco酶活性研究[J]. 核农学报, 2015, 29(6):1142-1148. Shan TB, Zhao MH, Wu JL, Xu ZJ. Study on photosynthetic characteristics and Rubisco activity of rice leaves with different stomatal densities[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(6):1142-1148.
计量
- 文章访问数: 1026
- HTML全文浏览量: 2
- PDF下载量: 904