Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)
-
摘要: 利用数据库中已有的部分菰(Zizania latifolia Turcz.)核基因组序列,采用in silico方法开发其SSR引物,并选取我国不同纬度的5个菰野生种群,对合成的64对引物进行筛选。结果显示:64对引物中有15对至少在一个种群中表现出多态性;共发现84个等位基因,每个位点平均有5.6个等位基因。在5个种群中,观察杂合度为0.000~0.941,预期杂合度为0.072~0.625。种群间的基因流(Nm=0.576)水平较低导致了种群间表现出较高的遗传分化(FST=0.432)。进一步对稻族其他物种的通用性检测发现,15个多态位点中,有8个位点在亚洲栽培稻(Oryza sativa L.)中得到扩增,有9个位点在普通野生稻(O. rufipogon Griff.)中得到扩增。
-
关键词:
- 微卫星标记 /
- 参照基因组 /
- 简单重复序列(SSR) /
- 野生稻 /
- 菰
Abstract: Zizania latifolia Turcz., also known as Manchurian wild rice, is a member of the tribe Oryzeae, and a major wild ecological and genetic resource. In this study, nuclear SSR primers were developed in silico based on part of the existing genome sequences of Z. latifolia. Five wild populations of the species from different regions across China were selected to screen 64 developed primers. Results showed that 15 primer pairs were polymorphic in at least one population. In addition, we identified a total of 84 alleles, with an average of 5.6 alleles per locus. For the different populations, the level of observed and expected heterozygosity ranged from 0.000 to 0.941 and 0.072 to 0.625, respectively. Relatively high genetic differentiation between populations (FST=0.432) was found, as evidenced by low levels of gene flow (Nm=0.576) among populations. These newly developed markers will facilitate further study of the level and pattern of genetic diversity, and the development of germplasm resource conservation strategies for natural extant Z. latifolia populations. In the cross-species transferability test, eight and nine of the 15 loci were successfully amplified in Oryza sativa L. and O. rufipogon Griff., respectively. -
-
[1] Chen Y, Long L, Lin X, Guo W, Liu B. Isolation and characterization of a set of disease resistance-gene analogs (RGAs) from wild rice, Zizania latifolia Griseb. I. Introgression, copy number lability, sequence change, and DNA methylation alteration in several rice-Zizania introgression lines[J]. Genome, 2006, 49(2):150-158.
[2] Terrell E, Peterson P, Reveal J, Duvall M. Taxonomy of North American species of Zizania (Poaceae)[J]. Sida, 1997, 17:533-549.
[3] Xu X, Walters C, Antolin MF, Alexander ML, Lutz S, et al. Phylogeny and biogeography of the eastern Asian-North American disjunct wild-rice genus (Zizania L., Poaceae)[J]. Mol Phylogenet Evol, 2010, 55(3):1008-1017.
[4] Peng SL, You WH, Qi G, Yang FL. Nitrogen and phosphorus uptake capacity and resource use of aquatic vegetables floating bed in the eutrophicated lake[C/OL]//2013 Third International Conference on Intelligent System Design and Engineering Applications. (2013-01-01)[2019-09-05]. DOI: 10.1109/ISDEA.2012.237.
[5] Chen YY, Liu Y, Fan XR, Li W, Liu YL. Landscape-scale genetic structure of wild rice Zizania latifolia:The roles of rivers, mountains and fragmentation[J]. Front Ecol Evol, 2017, 5:17.
[6] Guo HB, Li SM, Peng J, Ke WD. Zizania latifolia Turcz. cultivated in China[J]. Genet Resour Crop Evol, 2007, 54(6):1211-1217.
[7] Chen YY, Chu HJ, Liu H, Liu YL. Abundant genetic diversity of the wild rice Zizania latifolia in central China revealed by microsatellites[J]. Ann Appl Biol, 2012, 161(2):192-201.
[8] Wang HM, Wu GL, Jiang SL, Huang QN, Feng BH, et al. Genetic diversity of Zizania latifolia Griseb. from Poyang lake basin based on SSR and ISSR analysis[J]. J Plant Genet Resour, 2015, 16(1):133-141.
[9] Fan XR, Ren XR, Liu YL, Chen YY. Genetic structure of wild rice Zizania latifolia and the implications for its management in the Sanjiang Plain, Northeast China[J]. Biochem Syst Ecol, 2016, 64:81-88.
[10] Zhao Y, Zhong L, Zhou K, Song Z, Chen J, Rong J. Seed characteristic variations and genetic structure of wild Zizania latifolia along a latitudinal gradient in China:Implications for neo-domestication as a grain crop[J]. AoB Plants, 2018, 10(6):ply072.
[11] Quan Z, Pan L, Ke W, Liu Y, Ding Y. Sixteen polymorphic microsatellite markers from Zizania latifolia Turcz. (Poaceae)[J]. Mol Ecol Resour, 2009, 9(3):887-889.
[12] Guo LB, Qiu J, Han ZJ, Ye ZH, Chen C, et al. A host plant genome (Zizania latifolia) after a century-long endophyte infection[J]. Plant J, 2015, 83(4):600-609.
[13] Li Q, Wan JM. SSRHunter:Development of a local searching software for SSR sites(in Chinese)[J]. Hereditas, 2005, 27:808-810.
[14] Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR:An in-silico tool for fast primer and probe design and advanced sequence analysis[J]. Genomics, 2017, 109(3/4):312-319.
[15] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
[16] Peakall ROD, Smouse PE. GENALEX 6:Genetic analysis in Excel. Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6:288-295.
[17] Goudet J. FSTAT ver 2.9.4, a program to estimate and test gene diversities and fixation indices[EB/OL]. (2005-08-23)[2019-09-05]. https://www2.unil.ch/popgen/softwares/fstat.htm.
[18] Kumar S, Stecher G, Tamura, K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
[19] Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species[J]. Philos Trans R Soc Lond B Biol Sci, 1996, 351(1345):1291-1298.
[20] Xu XW, Ke WD, Yu XP, Wen J, Ge S. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based onAdh1a sequences[J]. Theor Appl Genet, 2008, 116(6):835-843.
[21] Wright S. Evolution and the Genetics of Populations:the Theory of Gene Frequencies[M]. Illinois:University of Chicago Press, 1969.
计量
- 文章访问数: 731
- HTML全文浏览量: 2
- PDF下载量: 652