高级检索+

江西主要山脉春兰野生居群遗传结构与分化

谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金

谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金. 江西主要山脉春兰野生居群遗传结构与分化[J]. 植物科学学报, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123
引用本文: 谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金. 江西主要山脉春兰野生居群遗传结构与分化[J]. 植物科学学报, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123
Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123
Citation: Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. DOI: 10.11913/PSJ.2095-0837.2020.10123
谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金. 江西主要山脉春兰野生居群遗传结构与分化[J]. 植物科学学报, 2020, 38(1): 123-133. CSTR: 32231.14.PSJ.2095-0837.2020.10123
引用本文: 谢慧敏, 彭德镇, 陈衍如, 罗火林, 杨柏云, 熊冬金. 江西主要山脉春兰野生居群遗传结构与分化[J]. 植物科学学报, 2020, 38(1): 123-133. CSTR: 32231.14.PSJ.2095-0837.2020.10123
Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. CSTR: 32231.14.PSJ.2095-0837.2020.10123
Citation: Xie Hui-Min, Peng De-Zhen, Chen Yan-Ru, Luo Huo-Lin, Yang Bo-Yun, Xiong Dong-Jin. Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China[J]. Plant Science Journal, 2020, 38(1): 123-133. CSTR: 32231.14.PSJ.2095-0837.2020.10123

江西主要山脉春兰野生居群遗传结构与分化

基金项目: 

国家自然科学基金地区基金(31260485);江西省科技支撑计划项目(20122BBF60059);南昌大学研究生创新专项资金项目(CX2018104)。

详细信息
    作者简介:

    谢慧敏(1994-),女,硕士研究生,研究方向为植物遗传资源(E-mail:599704199@qq.com)。

  • 中图分类号: S682.31

Genetic structure and differentiation of wild populations of Cymbidium goeringii (Rchb. f.) Rchb. f. in the main mountain range of Jiangxi Province, China

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31260485), Jiangxi Province Science and Technology Support Project (20122BBF60059), and Nanchang University Graduate Innovation Special Fund Project (CX2018104).

  • 摘要: 利用ISSR分子标记对江西省主要山脉的21个春兰(Cymbidium goeringii(Rchb. f.)Rchb. f.)居群进行居群遗传结构研究。结果显示,利用14个筛选的引物共扩增出139条条带,其中多态性条带118条,多态性条带百分率(PPL)为84.89%。21个居群的Nei's 基因多样性(He)为0.2292,Shannon指数(I)为0.3613。AMOVA分析表明,春兰居群间变异占50.79%, 居群内变异占49.21%, 居群间的遗传分化大于居群内的分化。STRUCTURE群体遗传结构和UPGMA聚类分析均表明,江西主要山脉的春兰居群存在地理隔离和生境片断化。推测江西春兰曾广泛分布于罗霄山脉和武夷山脉,受第四纪冰期影响,春兰群体因气候剧烈变化而骤减,仅在山脉间适宜的环境中得以保存并繁衍至今,罗霄山脉和武夷山脉是春兰最主要的两个冰期避难所。综合遗传多样性与居群遗传结构特点,建议在遗传多样性较高的石城(SC)、宜丰(YF)、贵溪(GX)居群设点进行就地保护;对资源破坏严重的大余(DY)和井冈山(JGS)居群实行迁地保护。
    Abstract: We used ISSR molecular markers to study the genetic structure of 21 Cymbidium goeringii (Rchb. f.) Rchb. f. populations in the main mountain range of Jiangxi Province, China. Results showed that 139 bands were amplified by the 14 selected primers. Among these bands, 118 were polymorphic, resulting in a percentage of polymorphic bands (PPL) of 84.89%. The Nei’s gene diversity (He) and Shannon index (I) values of the 21 populations were 0.2292 and 0.3613, respectively. AMOVA analysis unveiled that inter-population variation (50.79%) was greater than intra-population variation (49.21%). Both these results of population genetic structure and UPGMA cluster analysis showed that the C. goeringii populations in the main mountain range of Jiangxi Province were geographically isolated and their habitats were fragmented. Based on the above analysis, we inferred that C. goeringii was once widely distributed in the mountain ranges of Luoxiao and Wuyi. Following the Quaternary glacial period, these populations declined sharply due to severe climate change, but were preserved to the present day in suitable environments between these two mountains. Thus, the Luoxiao and Wuyi mountains formed primary ice-age refuges for C. goeringii. These results, combined with the genetic diversity and structure of C. goeringii populations, may provide a valuable basis for conservation strategies. In situ conservation would be suitable for the Shicheng (SC), Yifeng (YF), and Guixi (GX) populations due to their sufficient genetic diversity, whereas ex situ strategies should be considered for Dayu (DY) and Jinggangshan (JGS), which have experienced serious resource destruction.
  • [1] 陈心启, 吉占和. 中国兰花全书[M]. 2版. 北京:中国林业出版社, 2003.
    [2]

    Li XB, Jin F, Jin L, Jackson A, Huang C, Li KH, Shu XL. Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums[J]. BMC Genetics, 2014, 15(1):124.

    [3] 李丽辉, 胡瑶, 李宏告, 张跃龙, 张勇, 吴宏燕. 基于RAPD、ISSR标记的国兰种质资源遗传多样性研究[J]. 中国农学通报, 2018, 34(29):48-53.

    Li LH, Hu Y, Li HG, Zhang YL, Zhang Y, Wu HY. Study on genetic diversity of China orchid resources using RAPD and ISSR markers[J]. Chinese Agricultural Science Bulletin, 2018, 34(29):48-53.

    [4] 马红勃, 赖鋆英, 许旭明, 陈昌铭, 尚伟, 罗志花, 江秋萍. 基于SRAP标记的大花蕙兰种质资源遗传多样性分析[J]. 植物遗传资源学报,2011, 12(4):551-556.

    Ma HB, Lai JJ, Xu XM, Chen CM, Shang W, Luo ZH, Jiang QP. Genetic diversity analysis of Hybrid Cymbidi-um's Germplasm resources based on SRAP markers[J]. Journal of Plant Genetic Resources, 2011, 12(4):551-556.

    [5]

    Bhattacharyya P, Kumaria S, Kumar S, Tandon P. Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species[J]. Gene, 2013, 529(1):21-26.

    [6] 钱鑫, 李全健, 连静静, 王彩霞, 田敏. 濒危植物扇脉杓兰野生居群遗传多样性的AFLP分析[J]. 生态学杂志, 2013, 32(6):1445-1450.

    Qian X, Li QJ, Lian JJ, Wang CX, Tian M. Genetic diversity of endangered wild Cypripedium japonicum populations:An AFLP analysis[J]. Chinese Journal of Ecology, 2013, 32(6):1445-1450.

    [7] 江亚雯, 孙小琴, 罗火林, 杨柏云, 熊冬金. 基于ISSR标记的江西野生寒兰居群遗传多样性研究[J]. 园艺学报, 2017, 44(10):1993-2000.

    Jiang YW, Sun XQ, Luo HL, Yang BY, Xiong DJ. Studies on genetic diversity of Cymbidium kanran populations from the main mountains in Jiangxi province based on ISSR marker[J]. Acta Horticulturae Sinica, 2017, 44(10):1993-2000.

    [8]

    Chung MY, Chung MG. Allozyme diversity in populations of Cymbidium goeringii (Orchidaceae)[J]. Plant Biology, 2000, 2(1):77-82.

    [9]

    Chung MY, Nason JD. Spatial demographic and genetic consequences of harvesting within populations of the terrestrial orchid Cymbidium goeringii[J]. Biol Conserv, 2007, 137(1):125-137.

    [10] 牛田, 张林, 王厚新, 李承秀, 聂硕, 朱翠翠, 王长宪. 利用SRAP标记分析春兰种质资源遗传多样性[J]. 农学学报, 2014, 4(8):53-58.

    Niu T, Zhang L, Wang HX, Li CX, Nie S, Zhu CC, Wang CX. Genetic diversity analysis of Cymbidium goeringii's germplasm resources based on SRAP markers[J]. Journal of Agriculture, 2014, 4(8):53-58.

    [11] 高丽, 杨波. 湖北野生春兰资源遗传多样性的ISSR分析[J]. 生物多样性, 2006, 14(3):250-257.

    Gao L, Yang B. Genetic diversity of wild Cymbidium goeringii (Orchidaceae) populations from Hubei based on ISSR analysis[J]. Biodiversity Science, 2006, 14(3):250-257.

    [12]

    Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ. Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers[J]. Genetica, 2009, 136(3):391-99.

    [13] 王晓英, 张林, 李承秀, 赵建文, 王郑昊, 王长宪. 51个春兰(Cymbidium goeringii)品种的AFLP遗传多样性分析[J]. 植物遗传资源学报, 2015, 16(3):653-658.

    Wang XY, Zhang L, Li CX, Zhao JW, Wang ZH, Wang CX. Genetic diversity analysis of 51Cymbidium goeringii cultivars by AFLP markers[J]. Journal of Plant Genetic Resources, 2015, 16(3):653-658.

    [14]

    Liu XF, Huang Y, Li F, Xu CJ, Chen KS. Genetic diversity of 129 spring orchid (Cymbidium goeringii) cultivars and its relationship to horticultural types as assessed by EST-SSR markers[J]. Scientia Horticulturae, 2014, 174(1):178-184.

    [15]

    Tsumura Y, Yoshimura K, Tomaru N, Ohba K. Molecular phytogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes[J]. Theor Appl Genet,1995, 91(8):1222-1236.

    [16]

    See LM, Hassan R, Tan SG, Bhassu S, Ambak MA, Bolong AMA, Peakell R. POPGENE, the user-friendly shareware for population genetic analysis[J]. Biotechnology, 2006, 7(2):104-110.

    [17]

    Excoffier L, Lischer HEL. Arlequin suite ver 3.5:A new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3):564-567.

    [18]

    Pritchard JK, Stephens MJ, Donnelly PJ. Inference of population structure using multilocus genotype data[J]. Genetics, 2000,155:945-959.

    [19]

    Earl DA, Vonholdt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.

    [20]

    Jakobsson M, Rosenberg N. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14):1801-1806.

    [21]

    Rosenberg NA. DISTRUCT:a program for the graphical display of population structure[J]. Mol Ecol Notes, 2004, 4(1):137-138.

    [22]

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.

    [23]

    He ZL, Zhang HK, Gao SH, Lercher MJ, Chen WH, Hu SN. Evolview v2:an online visualization and management tool for customized and annotated phylogenetic trees[J]. Nucleic Acids Res, 2016, 44(Web server issue):W236-W241.

    [24]

    Letunic I, Bork P. Interactive tree of life (iTOL) v3:an online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Res, 2016, 44(Web server issue):W242-W245.

    [25]

    Evanno GS, Regnaut SJ, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.

    [26]

    Ayala FJ, Kiger JA. Modern Genetics[M]. 2nd ed. Menlo Park:Benjamin/Cummings, 1984:923.

    [27]

    Reisch C, Markus Bernhardt-Römermann. The impact of study design and life history traits on genetic variation of plants determined with AFLPs[J]. Plant Ecol, 2014, 215(12):1493-1511.

    [28] 杜夏瑾, 黎啸峰, 吴敏, 王丽. 生活史性状和取样策略对植物微卫星遗传多样性参数估算的影响[J]. 湖南师范大学自然科学学报, 2015, 38(4):21-28.

    Du XJ, Li XF, Wu M, Wang L. Effects of life history traits and sampling strategies on microsatellite-based genetic diversity estimates in plants[J]. Journal of Natural Science of Hunan Normal University, 2015, 38(4):21-28.

    [29]

    Bussell. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae)[J]. Mol Ecol, 1999, 8(5):775-789.

    [30]

    Case MA. High levels of allozyme variation within Cypripdeium caleolus (Orchidaceae) and low levels of divergence among its varieties[J]. Syst Bot, 1993, 18(4):663-677.

    [31]

    Fan DM, Sun ZX, Li B, Kou YX, Hodel RGJ, Jin ZN, Zhang ZY. Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of and geospatial data[J]. Ecol Evol, 2017, 7(14):5140-5148.

    [32]

    Elam EDR. Population genetic consequences of small population size:Implications for plant conservation[J]. Annu Rev Ecol Syst, 1993, 24:217-242.

    [33]

    Young A. The population genetic consequences of habitat fragmentation for plants[J]. Trends Ecol Evol, 1996, 11:413-418.

    [34]

    Hogbin PM, Peakall R. Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata[J]. Conserv Biol, 1999, 13(3):514-522.

    [35]

    Hamrick JL, Godt MJW. Conservation genetics of ende-mic plant species[M]//Avise JC, Hamrick JL, eds. Conservation Genetics:Case Histories from Nature. New York:Chapman and Hall, 1996:281-304.

  • 期刊类型引用(5)

    1. 魏晓羽,刘红,马辉,别同德,孙叶. 基于ISSR标记的96份兰属种质资源遗传多样性分析及指纹图谱构建. 植物遗传资源学报. 2024(04): 946-959 . 百度学术
    2. 曾艳华,何荆洲,龙蔷宇,范继征,李秀玲,卜朝阳. 广西乐业野生春兰iPBS遗传多样性分析与指纹图谱构建. 西南农业学报. 2023(01): 11-19 . 百度学术
    3. 帖聪晓,汤秀菲,谢慧敏,杨柏云,罗火林,熊冬金. 江西主要山脉野生蕙兰的遗传结构与分化. 分子植物育种. 2023(11): 3669-3680 . 百度学术
    4. 叶兴状,文国卫,张明珠,刘益鹏,范辉华,张国防,陈世品,刘宝. 珍稀濒危植物半枫荷的遗传多样性及遗传结构. 植物科学学报. 2021(04): 415-423 . 本站查看
    5. Zhihua Zhou,Ronghong Shi,Yu Zhang,Xiaoke Xing,Xiaohua Jin. Orchid conservation in China from 2000 to 2020:Achievements and perspectives. Plant Diversity. 2021(05): 343-349 . 必应学术

    其他类型引用(1)

计量
  • 文章访问数:  875
  • HTML全文浏览量:  1
  • PDF下载量:  1154
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-06-04
  • 修回日期:  2019-06-30
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-02-27

目录

    /

    返回文章
    返回