Community niche characteristics and interspecific associations of critically endangered species, Vitis baihuashanensis M. S. Kang et D. Z. Lu
-
摘要: 以北京市Ⅱ级重点保护野生植物百花山葡萄(Vitis baihuashanensis M.S.Kang et D.Z.Lu)为研究对象,通过对其野生个体所在群落和人工扩繁个体所在群落进行样方调查,定量分析百花山葡萄自然群落的生态位特征和种间联结关系,对比人工群落的相关情况,探讨其濒危原因。结果显示:百花山葡萄自然群落总体呈正相关,物种正负关联比小于1,仍在向稳定群落发育;由于高大乔木和上层优势灌木截获了大量光照,以及高生态位重叠物种小花溲疏(Deutzia parviflora Bge.)、牛叠肚(Rubus crataegifolius Bge.)、短尾铁线莲(Clematis brevicaudata DC.)、五味子(Schisandra chinensis(Turcz.) Baill.)对各类资源的夺取,使百花山葡萄的营养生长受到明显限制。人工群落总体呈正相关,主要物种正负关联比大于1,目前处于相对较稳定状态;该群落缺乏高大乔木,光照充足,百花山葡萄与圆柏(Sabina chinensis(L.) Ant.)幼树等优势灌木呈不显著正相关,所受竞争压力相对较小,植株已进入生殖生长阶段。建议加强对百花山葡萄自然群落的人工抚育,适当疏枝、疏灌、疏藤,提高和改善百花山葡萄的光照条件,降低其他物种的资源竞争力度,以提高其在群落内的竞争能力,提升物种保护成效。Abstract: During the Anthropocene, the Earth’s ecological environment has experienced dramatic changes. With the global biodiversity crisis continuing to intensify, urgent actions are required to protect endangered species and maintain diversity. Grape species Vitis baihuashanensis M. S. Kang et D. Z. Lu is a grade Ⅱ key protected wild plant in Beijing with only two wild individuals. In this study, we conducted a quadrat survey of its natural and artificial communities, quantitatively analyzed the niche characteristics and interspecific associations of the natural community, and compared the natural and artificial community situations to determine the causes of endangerment from an ecological perspective. Based on analysis, the natural community shows positive associations and a positive-negative correlation ratio of less than one, indicating that the community is still developing towards stability. Vegetative growth of Vitis baihuashanensis is greatly limited, not only because the superior arbor and shrub layers intercept considerable light, but also because species with high niche overlap, such as Deutzia parviflora Bge., Rubus crataegifolius Bge., Clematis brevicaudata DC., and Schisandra chinensis (Turcz.) Baill., out-compete for various resources. In contrast, based on the general positive associations and positive-negative correlation ratio greater than one, the artificial community is currently stable which lacks of tall trees and has availability of sufficient light. In addition, Vitis baihuashanensis has non-significant positive correlation with dominant shrubs, such as Sabina chinensis (L.) Ant., and thus competition pressure is relatively small, allowing the plant to achieve reproductive growth. Thus, it is suggested that artificial management of the natural community should be strengthened, including reducing shrub and vine coverage, improving light conditions, and decreasing resource competition with other species to enhance the competitive ability of this species.
-
-
[1] Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth[J]. PNAS, 2018, 115(25):6506-6511.
[2] Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, et al. Plant biodiversity change across scales during The Anthropocene[J]. Annu Rev Plant Biol, 2017, 68(1):563-586.
[3] IUCN. IUCN Red List of Threatened species[EB/OL].[2019-07-18]. https://www.iucnredlist.org/search/stats?redListCategory=lc.
[4] Säterberg T, Sellman S, Ebenman B. High frequency of functional extinctions in ecological networks[J]. Nature, 2013, 499(7459):468-470.
[5] Liu J, Diamond J. China's environment in a globalizing world[J]. Nature, 2005, 435(7046):1179.
[6] Sang WG, Ma KP, Axmacher JC. Securing a future for China's wild plant resources[J]. Bioscience, 2011, 61(9):720-725.
[7] Scheele BC, Foster CN, Banks SC, Lindenmayer DB. Niche contractions in declining species:mechanisms and consequences[J]. Trends Ecol Evol, 2017, 32(5):346.
[8] Sánchez-González A, López-Mata L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico[J]. Divers Distrib, 2005, 11(6):567-575.
[9] 徐满厚, 刘敏, 翟大彤, 刘彤. 植物种间联结研究内容与方法评述[J]. 生态学报, 2016, 36(24):8224-8233. Xu MH, Liu M, Zhai DT, Liu T. A review of contents and methods used to analyze various aspects of plant interspecific associations[J]. Acta Ecologica Sinica, 2016, 36(24):8224-8233.
[10] 刘艳, 郑越月, 敖艳艳. 不同生长基质的苔藓植物优势种生态位与种间联结[J]. 生态学报, 2019, 39(1):286-293. Liu Y, Zheng YY, Ao YY. Niche and interspecific association of dominant bryophytes on different substrates[J]. Acta Ecologica Sinica, 2019, 39(1):286-293.
[11] This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes[J]. Trends Genet, 2006, 22(9):511-519.
[12] Liu CH, Fan XC, Jiang JF, Guo DL, Sun HS, Zhang Y, et al. Genetic diversity of Chinese wild grape species by SSR and SRAP markers[J]. Biotechnol Biotec Eq, 2012, 26(2):2899-2903.
[13] Liang ZC, Duan SC, Sheng J, Zhu SS, Ni XM, Shao JH, et al. Whole-genome resequencing of 472Vitis accessions for grapevine diversity and demographic history analyses[J]. Nat Commun, 2019, 10(1):1190.
[14] 康木生, 路端正. 北京葡萄属一新种[J]. 植物分类学报, 1993, 31(1):70-71. Kang MS, Lu DZ. A new species of Vitis from Beijing[J]. Acta Phytotaxonomica Sinica, 1993, 31(1):70-71.
[15] 路端正, 梁红平. 北京葡萄属植物研究[J]. 北京农学院学报, 1994, 9(1):78-81. Lu DZ, Liang HP. The study of Vitis in Beijing[J]. Journal of Beijing Agricultural College, 1994, 9(1):78-81.
[16] Mu XY, Shen XL, Wu YM, Zhu YX, Dong SB, Xia XF, et al. Plastid phylogenomic study of grape species and its implications for evolutionary study and conservation of Vitis[J]. Phytotaxa, 2018, 364(1):71-80.
[17] 张博雅. 自然保护区生态旅游资源分类与评价[D]. 北京:北京林业大学, 2016. [18] 张晓秋. 松山自然保护区生物多样性使用价值评估[D]. 北京:中国林业科学研究院, 2004. [19] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. 金钟藤入侵群落的种间联结及生态位特征[J]. 生物多样性, 2019, 27(4):388-399. Jiang H, Zhang H, Long WX, Fang YQ, Fu MQ, Zhu KX. Interspecific associations and niche characteristics of communities invaded by Decalobanthus boisianus[J]. Biodiversity Science, 2019, 27(4):388-399.
[20] 李德志, 石强, 臧润国, 王绪平, 盛丽娟, 朱志玲, 王长爱. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 2006, 42(7):95-103. Li DZ, Shi Q, Zang RG, Wang XP, Sheng LJ, Zhu ZL, Wang CA. Model for niche breadth and niche overlap of species or populations[J]. Scientia Silvae Sinicae, 2006, 42(7):95-103.
[21] 陈玉凯, 杨琦, 莫燕妮, 杨小波, 李东海, 洪小江. 海南岛霸王岭国家重点保护植物的生态位研究[J]. 植物生态学报, 2014, 38(6):576-584. Chen YK, Yang Q, Mo YN, Yang XB, Li DH, Hong XJ. A study on the niches of the state's key protected plants in Bawangling, Hainan Island[J]. Chinese Journal of Plant Ecology, 2014, 38(6):576-584.
[22] Su SJ, Liu JF, He ZS, Zheng SQ, Hong W, Xu DW. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve[J]. J Mt Sci-Engl, 2015, 12(3):637-646.
[23] Guisan A, Thuiller W. Predicting species distribution:offering more than simple habitat models[J]. Ecol Lett, 2005, 8(9):993-1009.
[24] Scherrer D, Guisan A. Ecological indicator values reveal missing predictors of species distributions[J]. Sci Rep-UK, 2019, 9(1):3061.
[25] 宾宇波, 沙海峰, 任建武, 白琪芳. 百花山葡萄组织培养和快速繁殖[J]. 西北林学院学报, 2013, 28(6):99-102. Bing YB, Sha HF, Ren JW, Bai QF. Tissue culture and rapid propagation of Vitis amurensis Rupr. var. dissect[J]. Journal of Northwest Forestry University, 2013, 28(6):99-102.
-
期刊类型引用(1)
1. 曾权,朱雪珍,周利娟. 基于优化MaxEnt模型的南方三棘果在中国的潜在适生区预测. 华南农业大学学报. 2023(02): 254-262 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 776
- HTML全文浏览量: 1
- PDF下载量: 690
- 被引次数: 7