Carbon density in geomantic forests in Guangzhou, China
-
摘要: 以广州市典型风水林为对象,对其生态系统全组分碳储量及其分配格局进行调查和估算,研究碳密度特征及其影响因素。结果显示:风水林生态系统平均碳密度为(259.17±69.67)t/hm2,其中,植被碳密度为(194.04±54.07)t/hm2(占74.9%)(其中以乔木层占绝对优势,达90%以上),土壤碳密度为(65.13±19.30)t/hm2(占25.1%);植被和土壤碳密度之间呈显著正相关(P<0.05);不同优势种类的风水林碳密度差异较大,以米槠(Castanopsis carlesii(Hemsl.)Hayata.)为优势的林分碳密度最大(310.57±62.65 t/hm2)。结果表明影响风水林碳密度的主要因子是林分胸高断面积、林分密度、土壤容重和土壤碳含量,其中,风水林碳密度与胸高断面积、土壤容重和土壤碳含量呈显著正相关,与林分密度呈显著负相关,与植物多样性无显著相关。研究结果对南亚热带林分改造和碳汇林营造具有重要科学意义。Abstract: Typical geomantic forests were studied in Guangzhou, and their carbon (C) density composition and distribution patterns were investigated. Ecosystem, vegetation, and soil C density were (259.17±69.67) t/hm2, (194.04±54.07) t/hm2, and (65.13±19.30) t/hm2, respectively. The C densities of different dominant species in the geomantic forests differed significantly, with the highest C density for Castanopsis carlesii (Hemsl.) Hayata. (310.57±62.65 t/hm2). The ecosystem C storage was dominated by the tree layer (more than 90% of the vegetation). The main factors that affected forest vegetation C density in the geomantic forest were mean tree diameter at breast height (DBH), stand basal area (BA), stand density, soil bulk density, and soil C content, but not the species diversity indices. These results confirmed the importance of stand structure on C storage and dynamic reallocation in geomantic forests. Therefore, improving the complexity of community structure in geomantic forests during forest management might enhance forest C storage.
-
Keywords:
- Geomantic forest /
- Carbon storage density /
- Stand structure /
- Species diversity /
- Soil carbon
-
-
[1] Bonan GB. Forests and climate change:forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.
[2] Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993.
[3] Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, et al. Carbon pools in China's terrestrial ecosystems:New estimates based on an intensive field survey[J]. PNAS, 2018, 115(16):4021-4026.
[4] Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56.
[5] Todd-Brown KEO, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century[J]. Biogeosciences, 2014, 11(8):2341-2356.
[6] Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J]. PNAS, 2014, 111(13):4910-4915.
[7] Ryan MG, Harmon ME, Birdsey RA, Giardina CP, Heath LS, Houghton RA, et al. A synthesis of the science on forests and carbon for U.S. forests[J]. Issues in Ecology, 2010, 13:1-16.
[8] 徐耀粘, 江明喜. 森林碳库特征及驱动因子分析研究进展[J]. 生态学报, 2015, 35(3):926-933. Xu YZ, Jiang MX. Forest carbon pool characteristics and advances in the researches of carbon storage and related factors[J]. Acta Ecologica Sinica, 2015, 35(3):926-933.
[9] 吕超群,孙书存. 陆地生态系统碳密度格局研究概述[J]. 植物生态学报, 2004, 28(5):692-703. Lv CQ, Sun SC. A review on the distribution patterns of carbon density in terrestrial ecosystems[J]. Acta Phytoecologica Sinica, 2004, 28(5):692-703.
[10] 廖宇红, 陈传国, 陈红跃, 张杰, 吴钟亲, 刘烈旺. 广州市莲塘村风水林群落特征及植物多样性[J]. 生态环境学报, 2008, 17(2):812-817. Liao YH, Chen CG, Chen HY, Zhang J, Wu ZQ, Liu LW. Community characteristics and plant diversity of fengshui forest in Liantang village, Guangzhou[J]. Ecology and Environmental Sciences, 2008, 17(2):812-817.
[11] 沈伟剑. 珠江三角洲风水林序列及其群落生物多样性分析[D]. 广州:中山大学, 2008. [12] Chen BX, Coggins C, Minor J, Zhang YQ. Fengshui forests and village landscapes in China:Geographic extent, socioecological significance, and conservation prospects[J]. Urban Forestry & Urban Greening, 2017, 31(2018):79-92.
[13] 张瑞娟, 周璋, 李意德, 骆土寿, 李小川, 赵厚本. 广州市典型木荷风水林碳库价值核算[J]. 林业与环境科学, 2017, 33(4):2096-2053. Zhang RJ, Zhou Z, Li YD, Luo TS Li XC, Zhao HB. Carbon storage value accounting of a typical feng-shui wood of Schima superba in Guangzhou City[J]. Forestry and Environmental Science, 2017, 33(4):2096-2053.
[14] 卢泽彬. 东莞风水林生物量与碳储量径阶分布[J]. 中国林副特产, 2017(5):43-45. [15] Ma L, Shen CY, Lou D, Fu SL, Guan DS. Patterns of ecosystem carbon density in edge-affected fengshui forests[J]. Ecological Engineering, 2017, 107:216-223.
[16] 娄铎, 陈玉娟, 刘凯, 陈瑶瑶, 马磊, 于晨曦, 管东生. 广州东部风水林斑块面积对生物量的影响[J]. 中山大学学报(自然科学版), 2019, 58(1):18-27. Lou D, Chen YJ, Liu K, Chen YY, Ma L, Yu CX, Guan DS. Effects of patch size variation on biomass in fengshui forest in east Guangzhou[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(1):18-27.
[17] 翟石磊, 陈步峰, 林娜, 史欣, 潘永军, 邹志谨. 广州市典型森林植被的结构及多样性研究[J]. 生态环境学报, 2015, 24(10):1625-1633. Zhai SL, Chen BF, Lin N, Shi X, Pan YJ, Zou ZJ. Structure and species diversity of typical forests in Guangzhou city[J]. Ecology and Environmental Sciences, 2015, 24(10):1625-1633.
[18] 叶华谷,徐正春,吴敏,曹洪麟. 广州风水林[M]. 武汉:华中科技大学出版社, 2013:1-125. [19] 周国逸, 尹光彩, 唐旭利, 温达志, 刘昌平, 旷远文, 王万同. 中国森林生态系统碳储量:生物量方程[M]. 北京:科学出版社, 2018:40-74. [20] 张咏梅, 周国逸, 温达志, 张德强, 张倩媚. 南亚热带季风常绿阔叶林锥栗-荷木-黄果厚壳桂群落发展趋势探讨[J]. 植物生态学报, 2003, 27(2):256-262. Zhang YM, Zhou GY, Wen DZ, Zhang DQ, Zhang QM. Dynamics of the Castanopsis chinensis-Schima superba-Cryptocarya concinna community of monsoon evergreen broadleaved forest in Dinghushan Nature Reserve in lower subtropical China[J]. Acta Phytoecologica Sinica, 2003, 27(2):256-262.
[21] 徐伟强, 周璋, 赵厚本, 骆土寿, 张霞, 李健容, 徐大平, 李意德. 南亚热带3种常绿阔叶次生林的生物量结构和固碳现状[J]. 生态环境学报, 2015, 24(12):1938-1943. Xu WQ, Zhou Z, Zhao HB, Luo TS, Zhang X, Li JR, Xu DP, Li YD. Biomass structure and carbon storage in three evergreen broad-leaved secondary forests in low subtropical China[J]. Ecology and Environmental Sciences, 2015, 24(12):1938-1943.
[22] 史军辉, 黄忠良, 周小勇, 欧阳学军, 李炯, 张池. 鼎湖山森林群落物种多样性垂直分布格局的研究[J]. 生态学杂志, 2005, 24(10):1143-1146. Shi JH, Huang ZL, Zhou XY, Ouyang XJ, Li J, Zhang C. Vertical pattern of plant community and biodiversity on the Dinghu Mountain[J]. Chinese Journal of Ecology, 2005, 24(10):1143-1146.
[23] Fang JY, Yu GR, Liu LL, Hu SJ, Chapin FS. Climate change, human impacts, and carbon sequestration in China[J]. PNAS, 2018, 115(16):4015-4020.
[24] 莫江明, 方运霆, 彭少麟, Sandra B, 周国逸. 鼎湖山南亚热带常绿阔叶林碳素积累和分配特征[J]. 生态学报, 2003, 23(10):1970-1976. Mo JM, Fang YT, Peng SL, Sandra B, Zhou GY. Carbon accumulation and allocation of lower subtropical evergreen broad-leaved forests in a MAB reserve of China[J]. Acta Ecologica Sinica, 2003, 23(10):1970-1976.
[25] 粟娟, 周璋, 李意德. 广州市森林生态系统碳储量格局分析[J]. 中国城市林业, 2016, 14(4):15-21. Li J, Zhou Z, Li YD. Carbon storage pattern of forest ecosystems in Guangzhou city[J]. Journal of Chinese Urban Forestry, 2016, 14(4):15-21.
[26] 王卫霞, 史作民, 罗达, 刘世荣, 卢立华, 明安刚, 于浩龙. 我国南亚热带几种人工林生态系统碳氮储量[J]. 生态学报, 2013, 33(3):925-933. Wang WX, Shi ZM, Luo D, Liu SR, Lu LH, Ming AG, Yu HL. Carbon and nitrogen storage under different plantations in subtropical south China[J]. Acta Ecologica Sinica, 2013, 33(3):925-933.
[27] 方运霆, 莫江明, 彭少麟, 李德军. 森林演替在南亚热带森林生态系统碳吸存中的作用[J]. 生态学报, 2003, 23(9):1685-1694. Fang YT, Mo JM, Peng SL, Li DJ. Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China[J]. Acta Ecologica Sinica, 2003, 23(9):1685-1694.
[28] 张秋根, 任超, 王苏琴, 肖妮娜, 曹群. 江西省亚热带常绿阔叶林碳储量和碳密度的影响因子[J]. 南昌航空大学学报(自然科学版), 2018, 32(4):91-97. Zhang QG, Ren C, Wang SQ, Xiao NN, Cao Q. Carbon Storage and carbon density impact factor of subtropical evergreen broad-leaved forests in Jiangxi province[J]. Journal of Nanchang Hangkong University (Natural Science), 2018, 32(4):91-97.
[29] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19):5437-5448. Liu SR, Wang H, Luan JW. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19):5437-5448.
[30] 王绍强, 周成虎. 中国陆地土壤有机碳库的估算[J]. 地理研究, 1999, 18(4):349-356. Wang SQ, Zhou CH. Estimation of terrestrial soil organic carbon stock in China[J]. Geographical Research, 1999, 18(4):349-356.
[31] 邱凤英, 肖复明, 郭捷, 林小凡, 罗坤水, 曹展波, 李光运. 江西金盆山林区天然常绿阔叶林生态系统碳储量研究[J]. 中南林业科技大学学报, 2020, 40(1):105-113. Qiu FY, Xiao FM, Guo J, Lin XF, Luo KS, Cao ZB, Li GY. Carbon storage of evergreen broad-leaved forest, Jinpenshan, Jiangxi province[J]. Journal of Central South University of Forestry & Technology, 2020, 40(1):105-113.
[32] 兰秀, 杜虎, 宋同清, 曾馥平,彭晚霞,刘永贤,范稚莲,张家涌. 广西主要森林植被碳储量及其影响因素[J]. 生态学报, 2019, 39(6):2043-2053. Lan X, Du H, Song TQ, Zeng FP, Peng WX, Liu YX, Fan ZL, Zhang JY. Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors[J]. Acta Ecologica Sinica, 2019, 39(6):2043-2053.
[33] Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507(7490):90-93.
[34] Hu YQ, Su ZY, Li WB, Li JP, Ke XD. Influence of tree species composition and community structure on carbon density in a subtropical forest[J]. PLoS One, 2015, 10(8):1-9.
[35] Yuan ZQ, Wang SP, Gazo A, Mellard J, Lin F, Ye J, et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession[J]. Oecologia, 2016, 182(4):1175-1185.
[36] Ali A, Yan ER, Lohbeck M. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest[J]. Forest Ecol Manag, 2017, 401:125-134.
[37] Ali A, Yan ER, Chang SX, Chang SX, Cheng JY, Liu XY. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests[J]. Sci Total Environ, 2017, 574:654-662.
[38] Zhang Y, Chen HYH. Individual size inequality links forest diversity and above-ground biomass[J]. J Ecol, 2015, 103(5):1245-1252.
[39] 康昕, 王笑梅, 侯嫦英, 郑阿宝, 张存宽, 徐驰, 刘茂松. 林木个体大小差异对群落地上生物量及物种多样性的影响[J]. 生态学杂志, 2016, 35(9):228-2292. Kang X, Wang XM, Hou CY, Zheng AB, Zhang CK, Xu C, Liu MS. Effect of size inequality on aboveground biomass and species diversity of plant communities[J]. Chinese Journal of Ecology, 2016, 35(9):228-2292.
[40] Yuan ZQ, Wang SP, Ali A, Gazol A, Benito PR, Wang XG, et al. Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances[J]. Ann Forest Sci, 2018, 75(3):67-79.
[41] Oueslati I, Allamano P, Bonifacio E, Claps P. Vegetation and topographic control on spatial variability of soil orga-nic carbon[J]. Pedosphere, 2013, 23(1):48-58.
[42] Dewalt SJ, Chave J. Structure and biomass of four lowland neotropical forests[J]. Biotropica, 2004, 36(1):7-19.
[43] Paoli GD, Curran LM, Slik JWF. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo[J]. Oecologia, 2008, 155(2):287-299.
[44] 石洪华, 王晓丽, 王嫒, 刘振英, 麻德明. 北长山岛森林乔木层碳密度及其影响因子[J]. 生态学报, 2013, 33(19):6363-6372. Shi HH, Wang XL, Wang A, Liu ZY, Ma DM. Storage and drivers of forests carbon on the Beichangshan Island of Miaodao Archipelago[J]. Acta Ecologica Sinica, 2013, 33(19):6363-6372.
[45] Augusto L, Ranger J, Binkley D, Rothe A. Impact of several common tree species of European temperate forests on soil fertility[J]. Ann Forest Sci, 2002, 59(3):233-253.
-
期刊类型引用(1)
1. 邓海青. 广东风水林研究概况及保护建议. 热带林业. 2022(03): 23-25+18 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 548
- HTML全文浏览量: 0
- PDF下载量: 604
- 被引次数: 3