高级检索+

姜状三七遗传多样性和遗传分化研究

吴丽新, 龚洵, 潘跃芝

吴丽新, 龚洵, 潘跃芝. 姜状三七遗传多样性和遗传分化研究[J]. 植物科学学报, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525
引用本文: 吴丽新, 龚洵, 潘跃芝. 姜状三七遗传多样性和遗传分化研究[J]. 植物科学学报, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525
Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525
Citation: Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. DOI: 10.11913/PSJ.2095-0837.2020.40525
吴丽新, 龚洵, 潘跃芝. 姜状三七遗传多样性和遗传分化研究[J]. 植物科学学报, 2020, 38(4): 525-535. CSTR: 32231.14.PSJ.2095-0837.2020.40525
引用本文: 吴丽新, 龚洵, 潘跃芝. 姜状三七遗传多样性和遗传分化研究[J]. 植物科学学报, 2020, 38(4): 525-535. CSTR: 32231.14.PSJ.2095-0837.2020.40525
Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. CSTR: 32231.14.PSJ.2095-0837.2020.40525
Citation: Wu Li-Xin, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng[J]. Plant Science Journal, 2020, 38(4): 525-535. CSTR: 32231.14.PSJ.2095-0837.2020.40525

姜状三七遗传多样性和遗传分化研究

基金项目: 

国家自然科学基金项目(31570339)。

详细信息
    作者简介:

    吴丽新(1994-),女,硕士研究生,研究方向为植物资源评价(E-mail:610858160@qq.com)。

    通讯作者:

    潘跃芝,E-mail:panyuezhi@mail.kib.ac.cn

  • 中图分类号: Q347

Study on genetic diversity and differentiation of Panax zingiberensis C. Y. Wu et K. W. Feng

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31570339).

  • 摘要: 利用5个DNA片段及12个微卫星标记(SSR)对姜状三七(Panax zingiberensis C.Y.Wu et K.W.Feng)的遗传多样性和遗传分化进行分析。结果显示,与其他人参属(Panax)植物相比:姜状三七具有相对较高物种水平的核苷酸多态性和等位基因数;在居群水平上,景谷居群具有最高的核苷酸多态性和等位基因数,而江城居群最低。AMOVA分析结果表明,姜状三七在物种水平上具有一定程度的遗传分化,但不显著;在居群水平,江城居群与其他居群间的分化程度最高,其他居群间遗传分化不明显。Structure分析结果也显示江城居群与其他居群被聚类到不同分组,且形态特征相近的样本并未聚到一起,同一分布点的样本遗传成分更相似。
    Abstract: Panax zingiberensis C. Y. Wu et K. W. Feng is a perennial herbaceous plant belonging to the genus Panax (Araliaceae). It is an endangered species mainly distributed in southeastern and southern Yunnan, China. Like other species of Panax, P. zingiberensis (otherwise known as "Yesanqi") has high medicinal value and is used as a substitute of P. notoginseng by local people. In this study, the genetic diversity and genetic differentiation of P. zingiberensis was analyzed using data obtained from five DNA fragments and 12 microsatellite (SSR) markers. Results showed that the total nucleotide diversity of P. zingiberensis was just 0.00068 at the species level based on the combined analyses of four chloroplast fragments (psbA-trnH, psbM-trnD, rps16, and trnL-trnF), whereas the nucleotide diversity of nuclear ITS (Pi=0.01011) was high. In the 12 polymorphic microsatellite loci, a total of 89 alleles were identified, and the average number of alleles per locus was 7.417. Compared to other Panax species, P. zingiberensis had a relatively high level of nucleotide diversity and number of alleles. At the population level, population JG had the highest nucleotide diversity and number of alleles, whereas population JC had the lowest. AMOVA indicated that genetic variation among populations (55.03%) in the cpDNA fragment was greater than that within populations (44.97%). However, for the ITS fragment and SSR locus, genetic variation among populations (30.23% and 35.90%, respectively) was much lower than that within populations (69.77% and 64.10%, respectively). This indicated that P. zingiberensis had a certain degree of genetic differentiation at the species level, but it was not significant (P=0.01 or 0.05). At the population level, based on genetic differentiation indices (Fst', Gst'(Nei), and Rho) inferred from SSR data, population JC exhibited high differentiation from the other four populations, whereas no differentiation was observed among these populations. Structure analysis showed that JC and other populations were clustered into different genetic groups, respectively. Combined with phenotypic characteristics of the samples, structure analysis also showed that those individuals with similar morphological characteristics were not clustered together, whereas individuals of the same population had more similar genetic components. This study should help in the conservation of wild resources of P. zingiberensis.
  • [1] 吴征镒, 冯国楣, 周俊. 人参属植物的三萜成分和分类系统、地理分布的关系[J]. 植物分类学报, 1975, 13(2):29-48.

    Wu ZY, Feng GM, Zhou J. Triterpenoids from Panax Linn. and their relationship with taxonomy and geographical distribution[J]. Journal of Systematics and Evolution, 1975, 13(2):29-48.

    [2] 何景, 曾沧江. 中国植物志:第54卷[M]. 北京:科学出版社, 1978.
    [3] 冯国楣, 李雅茹. 云南植物志:第2卷[M]. 北京:科学出版社, 1979.
    [4]

    Xiang QB, Lowry P, Wu CY. Flora of China:Vol 13[M]. Beijing:Science Press, 2007.

    [5] 周明媚. DNA测序技术在三七及其野生近缘种鉴定中的应用[D]. 北京:中国科学院大学, 2017.
    [6] 吴其国, 符德欢, 毛小明, 胡叶青, 高丽. 姜状三七水提物的止血镇痛作用和急性毒性反应研究[J]. 安徽农业科学, 2016, 44(3):138-140.

    Wu QG, Fu DH, Mao XM, Hu YQ, Gao L. The analgesic hemostatic action and acute toxicity reaction of water extracts from Panax zingiberensis[J]. Journal of Anhui Agricultural Sciences, 2016, 44(3):138-140.

    [7]

    Zhou MM, Gong X, Pan YZ. Panax species identification with the assistance of DNA data[J]. Genet Resour and Crop Evol, 2018, 65(7):1839-1856.

    [8]

    Zhuravlev YN, Koren OG, Reunova GD, Muzarok TI, Gorpenchenko TY, et al. Panax ginseng natural populations:their past, current state and perspectives[J]. Acat Pharmacol Sin, 2008, 29(9):1127-1136.

    [9]

    Artyukova EV, Kozyrenko MM, Koren OG, Muzarok TI, Reunova GD, et al. RAPD and allozyme analysis of gene-tic diversity in Panax ginseng C. A. Meyer and P. quinquefolius L.[J]. Russ J Genet, 2004, 40(2):178-185.

    [10]

    Vasyutkina EA, Adrianova IY, Reunova GD, Nguyen TPT, Zhuravlev YN. A comparative analysis of genetic variability and differentiation in Panax vietnamensis Ha et Grushv. and P. ginseng C. A. Meyer using ISSR markers[J]. Russ J Genet, 2018, 54(2):262-265.

    [11]

    Zhou SL, Xiong GM, Zhong YL, Wen J. Loss of genetic diversity of domesticated Panax notoginseng F H Chen as evidenced by ITS sequence and AFLP polymorphism:a comparative study with P. stipuleanatus H T Tsai et K M Feng[J]. J Integr Plant Biol, 2005, 47(1):107-115.

    [12]

    Fushimi H, Komatsu K, Namba T, Isobe M. Genetic he-terogeneity of ribosomal RNA gene and matK gene in Panax notoginseng[J]. Planta Med, 2000, 66(7):659-661.

    [13]

    Yang TT, Mu LQ, Wang J. Optimizing SSR-PCR system of Panax ginseng by orthogonal design[J]. J Forestry Res, 2007, 18(1):31-34.

    [14]

    Huang XM, Chen JM, Yang XQ, Duan SH, Long C, et al. Low genetic differentiation among altitudes in wild Camellia oleifera, a subtropical evergreen hexaploid plant[J]. Tree Genet Genomes, 2018, 14(2):21.

    [15]

    Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, et al. Identification of new microsatellite markers in Panax ginseng[J]. Mol Cells, 2007, 24(1):60-68.

    [16] 杨维泽, 金航, 崔秀明, 沈涛, 杨美权, 张金渝. 三种人参属植物的EST-SSR信息分析及其在三七中的应用[J]. 基因组学与应用生物学, 2011, 30(1):62-71.

    Yang WZ, Jin H, Cui XM, Shen T, Yang MQ, et al. Analysis on EST-SSR of three species in genus Panax and the application in Panax notoginseng[J]. Genomics and Applied Biology, 2011, 30(1):62-71.

    [17]

    Reunova GD, Kats IL, Muzarok TI, Nguyen CTP, Dang TT, et al. Diversity of microsatellite loci in the Panax vietnamensis Ha et Grushv. (Araliaceae) population[J]. Dokl Biol Sci, 2011, 441(4):408-411.

    [18]

    Doyle J. DNA Protocols for Plants-CTAB Total DNA Isolation[M]. Berlin:Springer, 1991.

    [19]

    Zuo YJ, Zhong JC, Kondo K, Funamoto T, Wen J, et al. DNA barcoding of Panax species[J]. Planta Med, 2011, 77(2):182-187.

    [20]

    Swindell SR. Sequence Data Analysis Guidebook[M]. New York:Springer, 1997.

    [21]

    Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symp Ser, 1999, 41(41):95-98.

    [22]

    Posada D, Crandall KA. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.

    [23]

    Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data[J]. Am J Hum Genet, 2001, 68(4):978-989.

    [24]

    Hong CP, Lee SJ, Park JY, Plaha P, Park YS, et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences[J]. Mol Genet Genomics, 2004, 271(6):709-716.

    [25]

    Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C. A. Meyer) genome and evidence for allotetraploidy[J]. Plant J, 2014, 77(6):906-916.

    [26] 潘跃芝, 张亦弛, 龚洵, 李富生. 4种人参属植物基因组大小的测定[J]. 植物分类与资源学报, 2014, 36(2):233-236.

    Pan YZ, Zhang YC, Gong X, Li FS. Estimation of genome size of four Panax species by flow cytometry[J]. Plant Diversity and Resources, 2014, 36(2):233-236.

    [27]

    Meirmans PG, Tienderen PHV. Genotype and Genodive:two programs for the analysis of genetic diversity of ase-xual organisms[J]. Mol Ecol Notes, 2004, 4(4):792-794.

    [28]

    Meirmans PG. Using the AMOVA framework to estimate a standardized genetic differentiation measure[J]. Evolution, 2006, 60(11):2399-2402.

    [29]

    Hedrick PW. A standardized genetic differentiation mea-sure[J]. Evolution, 2005, 59(8):1633-1638.

    [30]

    Ronfort J, Jenczewski E, Bataillon T, Rousset F. Analysis of population structure in autotetraploid species[J]. Genetics, 1998, 150(2):921-930.

    [31]

    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Gene-tics, 2000, 155(2):945-959.

    [32]

    Earl DA, VonHoldt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.

    [33]

    Belletti P, Diana F, Andrea P, Monteleone I. Genetic va-riation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy[J]. Eur J Forest Res, 2012, 131(4):1127-1138.

    [34]

    Pan YZ, Wang XQ, Sun GL, Li FS, Gong X. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae)[J]. PLoS One, 2016, 11(11):0166419.

    [35]

    Jo BH, Suh DS, Cho EM, Kim J, Ryu GH, et al. Characterization of polymorphic microsatellite loci in cultivated and wild Panax ginseng[J]. Genes Genom, 2009, 31(2):119-127.

    [36]

    Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, et al. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer)[J]. Conserv Genet, 2007, 8(6):1507-1509.

    [37]

    Wright S. Evolution and the Genetics of Populations[M]. Chicago:University of Chicago Press, 1978.

    [38] 崔相艳. 野生油茶潜在分布及纬度梯度遗传分化格局[D]. 南昌: 南昌大学, 2017.
  • 期刊类型引用(2)

    1. 杨如梦,汪加魏,付丹,肖艺,吴南生,高岩,朱秋敏,曹嘉晟. 南酸枣花芽形态分化过程及叶片营养生理特性. 林业科学. 2024(08): 132-142 . 百度学术
    2. 张燕良. 深山含笑育苗造林技术. 现代园艺. 2022(20): 42-44 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  653
  • HTML全文浏览量:  2
  • PDF下载量:  3055
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2019-12-25
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-08-27

目录

    /

    返回文章
    返回