高级检索+

甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析

李逸, 王璇, 刘志雄

李逸, 王璇, 刘志雄. 甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析[J]. 植物科学学报, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536
引用本文: 李逸, 王璇, 刘志雄. 甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析[J]. 植物科学学报, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536
Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536
Citation: Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. DOI: 10.11913/PSJ.2095-0837.2020.40536
李逸, 王璇, 刘志雄. 甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析[J]. 植物科学学报, 2020, 38(4): 536-542. CSTR: 32231.14.PSJ.2095-0837.2020.40536
引用本文: 李逸, 王璇, 刘志雄. 甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析[J]. 植物科学学报, 2020, 38(4): 536-542. CSTR: 32231.14.PSJ.2095-0837.2020.40536
Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. CSTR: 32231.14.PSJ.2095-0837.2020.40536
Citation: Li Yi, Wang Xuan, Liu Zhi-Xiong. Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen[J]. Plant Science Journal, 2020, 38(4): 536-542. CSTR: 32231.14.PSJ.2095-0837.2020.40536

甜荞FaesSTK基因在长花柱长雄蕊突变体lpls中的表达分析

基金项目: 

国家自然科学基金项目(31771867,31571736)。

详细信息
    作者简介:

    李逸(1997-),女,硕士研究生,研究方向为园林植物与应用(E-mail:759102933@qq.com)。

    通讯作者:

    刘志雄,E-mail:zxliu77@yahoo.com

  • 中图分类号: Q943.2

Expression analysis of FaesSTK gene in Fagopyrum esculentum Moench with long pistil and stamen

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31771867,31571736).

  • 摘要: 采用RACE技术,从甜荞(Fagopyrum esculentum Moench)中克隆获得3种花型的STK同源基因FaesSTK,并对其序列特征进行分析。结果显示,甜荞3种花型植株STK同源基因序列一致,全长为967 bp,包含长689 bp的完整开放阅读框,编码一个由225个氨基酸残基组成的D类MADS-box转录因子。蛋白序列比对及系统发育分析结果表明,FaesSTK蛋白属于MADS-box转录因子中的STK进化系。包含1个由57个氨基酸残基组成的高度保守的MADS结构域;1个由82个氨基酸残基组成的次级保守区域的K结构域,在C端的转录激活区还含有另外2个高度保守的基序(AGⅠ和AGⅡ)。实时荧光定量检测结果显示,FaesSTK基因主要在甜荞lpls突变体的雄蕊、雌蕊和不同发育时期的幼果中表达,在根和花被片中仅能检测到微弱的转录信号,在叶和茎中不表达,其中在雌蕊和果实中的表达量极显著高于其他组织。推测该基因在花发育过程中可能主要参与调控甜荞lpls突变体雌蕊和果实的发育。
    Abstract: Using RACE technology, three flower types of STK homologous gene FaesSTK (GenBank accession number:MN597104) were examined from Fagopyrum esculentum Moench, and their sequence characteristics were analyzed. Sequence alignment results suggested that the sequences of the gene from the three flower types were identical. The gene was 967 bp in length and contained a 689 bp open reading frame (ORF) encoding 225 amino acids. Protein sequence alignment and phylogenetic analyses grouped the FaesSTK protein into the STK linage of D-class MADS-box transcription factors. FaesSTK contained a highly conservation MADS domain with 57 amino acids, a secondary conserved K-domain with 82 amino acids, as well as two highly conserved motifs (AGⅠ motif and AGⅡ motif) in the variable C-terminal region. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the FaesSTK gene was mainly expressed in the stamen, gynoecium, and young fruits at different developmental stages in the F. esculentum lpls mutant. Moreover, FaesSTK was weakly transcribed in the root and tepal but was absent in the leaf and stem. FaesSTK expression levels in the gynoecium and fruit were significantly higher than that in other tissues. Our data suggest that FaesSTK may play a major role in the development of the gynoecium and fruit of the F. esculentum lpls mutant.
  • [1]

    Soleti R, Andriantsitohaina R, Martinez MC. Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health[J]. Arch Biochem Biophys, 2018, 644(1):57-63.

    [2] 刘瑞, 于章龙, 柴永峰, 孙元琳, 宋昱, 等. 粮谷及其发芽物质变化研究进展[J]. 食品工业科技, 2019, 40(13):293-298.

    Liu R, Yu ZL, Chai YF, Sun YL, Song Y, et al. Research advances of substances variation in grain and germinated grain[J]. Science and Technology of Food Industry, 2019, 40(13):293-298.

    [3] 张柯彬, 陈炳全, 刘志雄. 甜荞 FaesAP2基因的克隆与表达分析[J]. 植物科学学报, 2017, 35(3):354-361.

    Zhang KB, Chen BQ, Liu ZX. Cloning and expression analysis of the FaesAP2 gene from Fagopyrum esculentum (Polygonaceae)[J]. Plant Science Journal, 2017, 35(3):354-361.

    [4]

    Takeshima R,Nishio T, Komatsu S,Kurauchi N,Matsui K. Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum)[J]. Heredity, 2019, 123(4):492-502.

    [5]

    Li LY, Fang ZW, Li XF. Isolation and characterization of the C-class MADS-box gene from the distylous pseudo-cereal Fagopyrum esculentum[J]. J Plant Biol, 2017, 60(2):189-198.

    [6] 方正武, 刘志雄. 甜荞花同源异型基因FeMADS1的克隆和序列结构分析[J]. 西北农业学报, 2015, 24(3):82-87.

    Fang ZW, Liu ZX. Cloning and sequence analysis of FeMADS1 gene from Fagopyrum sculentum[J]. Acta Agricu-lturae Boreali-Occidentalis Sinica, 2015, 24(3):82-87.

    [7] 陈稳良, 李秀莲, 史兴海, 梁改梅, 刘龙龙, 等. 甜荞等花柱资源与栽培甜荞杂交初步研究[J]. 植物遗传资源学报, 2020,21(4):1030-1035.

    Cheng WL, Li XL, Shi XH, Liang GM, Liu LL, et al. A preliminary study on the hybridization of common buckwheat isostyle resources and cultivated buckwheat[J]. Journal of Plant Genetic Resources, 2020, 21(4):1030-1035.

    [8] 黄凯丰, 李振宙, 王炎, 周良, 吴兴慧, 等. 我国荞麦高产栽培生理研究进展[J]. 贵州师范大学学报(自然科学版), 2019, 37(1):115-120.

    Huang KF, Li ZZ, Wang Y, Zhou L, Wu XH, et al. Research progress on physiology of buckwheat under high-yield cultivation[J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(1):115-120.

    [9]

    Dreni L, Kater MM. MADS reloaded:evolution of the AG-AMOUS subfamily genes[J]. New Phytol, 2014, 201(3):717-732.

    [10] 刘磊. 番茄果实全果肉性状的精细定位与候选基因分析[D]. 北京:中国农业科学院, 2017.
    [11] 山红艳. 三叶木通花发育相关基因的结构、功能和进化研究[D]. 北京:中国科学院大学, 2006.
    [12]

    Hu MZ, Hu WB, Xia ZQ, Zhou XC, Wang WQ. Validation of reference genes for relative quantitative gene expression studies in cassava (Manihot esculenta Crantz) by using quantitative real-time PCR[J]. Front Plant Sci, 2016, 7(7):680.

    [13]

    Yang YZ, Jack T. Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins[J]. Plant Mol Biol, 2004, 55(1):45-59.

    [14]

    Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. J Exp Bot, 2018, 69(10):2435-2459.

    [15]

    Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di MM, Chávez MRA,et al. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits[J]. Development, 2019,146(1):172395.

    [16] 熊书,李彦杰,周大祥.油菜MADS-box家族基因AGL11的克隆、表达及转化油菜的研究[J].西南农业学报, 2017, 30(10):2174-2178.

    Xiong S, Li YJ, Zhou DY. Cloning and expression and transformation of MADS-box family gene AGL11 in Brassica napus[J].Southwest China Journal of Agricultural Sciences, 2017, 30(10):2174-2178.

    [17]

    Tani E, Polidoros AN, Flemetakis E, Stedel C, Kalloniati C, et al. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit[J]. Plant Physiol Biochem, 2009, 47(8):690-700.

    [18]

    Colombo L, Franken J, vander Krol AR, et al. Downregulation of ovule specific MADS box genes from petunia results in maternally controlled defects in seed development[J]. Plant Cell, 1997, 9(5):703-715.

    [19]

    Busi MV, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio SB, et al. MADS-box genes expressed during tomato seed and fruit development[J]. Plant Mol Biol, 2003, 52(4):801-815.

    [20] 何卓远, 韦小英, 苏周, 吴雨, 雷豆, 等.向日葵MADS-box家族基因HaAGL11的克隆及表达分析[J].植物遗传资源学报, 2019, 21(1):260-268.

    He ZY, Wei XY, Su Z, Wu Y, Lei D, et al. Cloning and expression analysis of the MADS-box family gene HaAGL11 in sunflower[J]. Journal of Plant Genetic Resources, 2019, 21(1):260-268.

    [21] 费越, 夏胜应, 熊海燕, 刘志雄. 蕙兰CyfaSTK基因的克隆与表达分析[J]. 植物科学学报, 2019, 37(5):602-609.

    Fei Y, Xia SY, Xiong HY, Liu ZX. Cloning and expression analysis of CyfaSTK gene from Cymbidium faberi[J]. Plant Science Journal, 2019, 37(5):602-609.

    [22]

    Salemme M, Sica M, Gaudio L, Aceto S. The Oita AG and Oita STK genes of the orchid Orchis italica:a comparative analysis with other C- and D-class MADS-box genes[J]. Mol Biol Rep, 2013, 40(5):3523-3535.

    [23]

    Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS and SEEDSTICK ortholog in the orchid Dendro-bium thyrsiflorum(Reichb f.)[J].Gene, 2006, 366(2):266-274.

    [24] 吴菁华, 吴少华, 杨超, 张志忠, 林文雄. 中国水仙NtSTK基因的克隆、序列和组织表达分析[J]. 热带作物学报, 2015, 36(10):1820-1824.

    Wu JH, Wu SH, Yang C, Zhang ZZ, Lin WX. cDNA Cloning, sequence analysis and tissue expression of NtSTK in Narcissus tazetta var. chinensis[J]. Chinese Journal of Tropical Crops, 2015, 36(10):1820-1824.

  • 期刊类型引用(2)

    1. 冯晓婷,张漪,武娜. 碳点的制备及其对绿豆生长的影响. 吕梁学院学报. 2023(02): 23-26 . 百度学术
    2. 王欢欢,董元杰. 碳量子点缓解黑麦草镉胁迫的效应与机制. 中国草地学报. 2023(06): 23-31 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  558
  • HTML全文浏览量:  0
  • PDF下载量:  2874
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-12-16
  • 修回日期:  2020-01-15
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-08-27

目录

    /

    返回文章
    返回