Expression and photochemical properties of cyanobacteriochrome Alr1966GAF2 and its mutants
-
摘要: 采用PCR技术从鱼腥藻(Anabaena sp.PCC7120)中扩增蓝细菌光敏色素基因片段alr1966gaf2,将alr1966gaf2插入到pET-30a(+)载体中,构建表达质粒pET-alr1966gaf2。最后将Alr1966GAF2与HO1、PcyA在E.coli BL21(DE3)中共表达获得色素蛋白Alr1966GAF2,并对该蛋白的光化学性质进行分析。结果显示,色素蛋白Alr1966GAF2结合色素为藻蓝胆素(phycoerythrobilin,PCB)或藻紫胆素(phycoviolobilin,PVB),在3种不同吸收态15Z-P428 nm、中间态和15E-P514 nm之间具有顺序可逆光效应。通过定点突变技术将DXCF基序中的保守性Cys突变为Ala,获得了突变体Alr1966GAF2(C72A)。将Alr1966GAF2(C72A)与HO1、PcyA共表达,获得色素蛋白Alr1966GAF2(C72A)。研究结果表明Alr1966GAF2(C72A)结合色素为PCB,Alr1966GAF2(C72A)-PCB具有较强的荧光活性,其荧光量子的产率高达0.11。Alr1966GAF2(C72A)不仅能够共价结合PCB,还可以结合胆绿素(Biliverdin,BV),均具有较强的红色荧光活性。Abstract: To construct pET-alr1966gaf2, a fragment of alr1966gaf2 was amplified by polymerase chain reaction (PCR) from Anabaena sp. PCC7120, and then inserted into pET-30a(+). For over-expression, pET-alr1966gaf2 was transformed into Escherichia coli BL21(DE3) containing pACYC-ho1-pcyA and biliproteins were co-expressed successfully. Results showed that bili-Alr1966GAF2 had a sequential reversible photoconversion in three different states. We also detected red fluorescence reversible photoconversion of Alr1966GAF2 in 15E-P514 nm/15Z-P428 nm forms. Via site-directed mutagenesis, we mutated conserved Cys into Ala in the conserved DXCF motif of Alr1966GAF2, resulting in Alr1966GAF2(C72A). Alr1966GAF2(C72A)-PCB showed strong red fluorescence and high fluorescence quantum yield of 0.11. Furthermore, Alr1966GAF2(C72A) could bind to phycoerythrobilin (PCB) and biliverdin (BV) covalently, with strong red fluorescence. Therefore, as a red fluorescent protein, Alr1966GAF2(C72A) could be further developed as a fluorescent probe and applied in life sciences.
-
Keywords:
- Cyanobacteriochrome /
- Sequential reversibility /
- Red fluorescent protein /
- Biliverdin
-
-
[1] Sun YF, Xu JG, Tang K, Miao D, Gärtner W, et al. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin[J]. Photochem Photobiol, 2014, 13(5):757-763.
[2] Fushimi K, Enomoto G, Ikeuchi M, Narikawa R. Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis[J]. Photochem Photobiol, 2017, 93(3):681-691.
[3] Ma Q, Zheng XJ, Zhou Z, Zhou M. Fluorescence spectra properties of All4261 binding with phycocyanobilin in E. coli[J]. J Appl Spectrosc, 2014, 81(3):437-441.
[4] Sato M, Ikeuchi M. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina[J]. Sci Rep, 2015, 7950(5):1-10.
[5] Fushimi K, Nakajima T, Aono Y, Yamamoto T, Win NN, et al. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochromeAM1_C0023g2 that binds not only phycocyanobilin but also biliverdin[J]. Front Microbiol, 2016, 26(7):1-12.
[6] Rumyantsev KA, Shcherbakova DM, Zakharova NI, Verkhusha VV, Turoverov KK. Design of near-Infrared single-domain fluorescent protein GAF-FP based on bacterial phytochrome[J]. Cell Tissue Biol, 2017, 11(1):16-26.
[7] Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, et al. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic cre-reporter rat, and other neuronal studies[J]. J Neurosci Meth, 2017, 284:1-14.
[8] Tang K, Ding WL, Höppner A, Zhao C, Zhang L, et al. The terminal phycobilisome emitter, LCM:A light-harvesting pigment with a phytochrome chromophore[J]. Proc Natl Acad Sci USA, 2015, 112(52):15880-15885.
[9] Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, et al. Fused-gene approach to photoswitchable and fluorescent bili-proteins[J]. Angew Chem Int Edit, 2010, 49(32):5456-5458.
[10] Reichhart E, Ingles-Prieto A, Tichy AM, McKenzie C, Janovjak H, et al. A phytochrome sensory domain permits receptor activation by red light[J]. Angew Chem Int Edit, 2016, 55(21):6339-6342.
[11] Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. Optogenetic protein clustering and signaling activation in mammalian cells[J]. Nat methods, 2013, 10(3):249-253.
[12] 王晓辉. 增强型绿色荧光蛋白在DH5α大肠杆菌中的表达[J]. 食品科学, 2010, 31(21):200-203. Wang XH. Expression of enhanced green fluorescent protein in DH5α[J]. Food science, 2011, 31(21):200-203.
[13] Leopold AV, Chernov KG, Shemetov AA, Verkhusha VV. Neurotrophin receptor tyrosine kinases regulated with near-infrared light[J]. Nat Commun, 2019, 10:1129.
[14] Bugaj LJ, Spelke DP, Mesuda CK. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering[J]. Nat Commun, 2015, 6:6898.
[15] Xu ZQ, Han JX, Tang QY, Ding WL, Miao D, et al. Far-red light photoacclimation:Chromophorylation of FR induced α- and β-subunits of allophycocyanin[J]. Biochimica et Biophysica Acta, 2016, 1857(9):1607-1616.
[16] 马涛, 姚明月, 刘延琳. 酿酒酵母APAl的定点突变以及与增强型绿色荧光蛋白EGFP基因的共表达[J]. 食品科学, 2015, 36(23):200-203. Ma T, Yao MY, Liu YL. Site-directed mutagenesis of Saccharomyces cerevisiae APA1 and co-expression with EGFP[J]. Food science, 2015, 36(23):200-203.
-
期刊类型引用(2)
1. 蔡玉婷,茹毅,孙坤,张继,吴建平,李丹,冯汉青. 植物中表达口蹄疫病毒抗原研究进展. 生物工程学报. 2023(04): 1548-1561 . 百度学术
2. 鲜彬,徐翔铭,吴清华,任超翔,陈江,裴瑾. 农杆菌和基因枪介导的瞬时表达方法研究综述. 中药与临床. 2022(05): 110-117 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 555
- HTML全文浏览量: 0
- PDF下载量: 804
- 被引次数: 8