高级检索+

红树植物水分关系研究进展

冷冰, 曹坤芳

冷冰, 曹坤芳. 红树植物水分关系研究进展[J]. 植物科学学报, 2020, 38(4): 574-584. DOI: 10.11913/PSJ.2095-0837.2020.40574
引用本文: 冷冰, 曹坤芳. 红树植物水分关系研究进展[J]. 植物科学学报, 2020, 38(4): 574-584. DOI: 10.11913/PSJ.2095-0837.2020.40574
Leng Bing, Cao Kun-Fang. Advances in research on water relation of mangrove plants[J]. Plant Science Journal, 2020, 38(4): 574-584. DOI: 10.11913/PSJ.2095-0837.2020.40574
Citation: Leng Bing, Cao Kun-Fang. Advances in research on water relation of mangrove plants[J]. Plant Science Journal, 2020, 38(4): 574-584. DOI: 10.11913/PSJ.2095-0837.2020.40574
冷冰, 曹坤芳. 红树植物水分关系研究进展[J]. 植物科学学报, 2020, 38(4): 574-584. CSTR: 32231.14.PSJ.2095-0837.2020.40574
引用本文: 冷冰, 曹坤芳. 红树植物水分关系研究进展[J]. 植物科学学报, 2020, 38(4): 574-584. CSTR: 32231.14.PSJ.2095-0837.2020.40574
Leng Bing, Cao Kun-Fang. Advances in research on water relation of mangrove plants[J]. Plant Science Journal, 2020, 38(4): 574-584. CSTR: 32231.14.PSJ.2095-0837.2020.40574
Citation: Leng Bing, Cao Kun-Fang. Advances in research on water relation of mangrove plants[J]. Plant Science Journal, 2020, 38(4): 574-584. CSTR: 32231.14.PSJ.2095-0837.2020.40574

红树植物水分关系研究进展

基金项目: 

国家自然科学基金项目(31670406);广西“八桂学者”人才项目(C33600992001)。

详细信息
    作者简介:

    冷冰(1983-),女,博士研究生,讲师,研究方向为植物生理生态(E-mail:535086113@qq.com)。

    通讯作者:

    曹坤芳,E-mail:kunfangcao@gxu.edu.cn

  • 中图分类号: Q945.17

Advances in research on water relation of mangrove plants

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31670406) and Bagui Scholarship of Guangxi Zhuang Autonomous Region (C33600992001).

  • 摘要: 红树林生长于受潮汐影响的海滨特殊生境,具有重要的生态功能及应用价值。红树植物的水分利用特点一直是研究热点。由于受环境盐分影响,红树植物水势普遍较低;水分运输系统抗气穴化能力极强;水分利用保守,用水量处于同径级的热带陆生树木用水量的低值范围;表型可塑性大,可通过耐旱、耐盐和多样的水分管理策略适应潮间带环境;水分运输效率不低,能在环境条件适宜时进行高效的光合合成。本文通过大量的文献分析,综述了红树植物的水分关系特点、水分和盐分管理策略,对未来从多角度、结合新研究技术的红树植物水分关系研究进行了展望。
    Abstract: Mangroves, which grow in coastal habitats affected by tides, have important ecological functions and biological values. Understanding the water relationships of mangrove plants is an important area of research. Due to the influence of salty habitats, the water potential of mangroves is generally low. The water transportation system of mangroves exhibits high embolism resistance. Furthermore, mangrove water use is conservative, with water consumption in the low range for terrestrial tropical trees. Mangrove species show high phenotypic plasticity, high drought and salt tolerance, and diverse water management strategies in order to adapt to their intertidal environments. Their water transport efficiency is not low, which can support high photosynthesis when environmental conditions are favorable. The present paper reviews the characteristics of mangrove water use, as well as water and salt management strategies. We also propose future research areas on the water relationships of mangrove plants from multiple perspectives combined with new research techniques.
  • [1]

    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Glob Ecol Biogeogr, 2015, 20(1):154-159.

    [2]

    Lee SY, Primavera JH, Dahdouh-Guebas F, Mckee K, Bosire JO, et al. Ecological role and services of tropical mangrove ecosystems:a reassessment[J]. Glob Ecol Biogeogr, 2014, 23(7):726-743.

    [3]

    Sobrado MA. Relation of water transport to leaf gas exchange properties in three mangrove species[J]. Trees, 2000, 14(5):258-262.

    [4] 梁山, 周仁超, 董穗穗, 施苏华. 红树植物的盐适应性及其进化的研究进展[J]. 科学通报, 2008, 53(8):865-871.

    Liang S, Zhou RC, Dong SS, Si SH. Research progress on salt adaptability and evolution of mangrove plants[J]. Chinese Science Bulletin, 2008, 53(8):865-871.

    [5]

    Muller E, Lambs L, Fromard F. Variations in water use by a mature mangrove of Avicennia germinans, French Guiana[J]. Ann For Sci, 2009, 66(8):803-803.

    [6]

    Ruth R, Lovelock CE. Regulation of water balance in mangroves[J]. Ann Bot, 2015, 115(3):385.

    [7]

    Kathiresan K. A review of studies on Pichavaram mangrove, southeast India[J]. Hydrobiologia, 2000, 430(1-3):185-205

    [8]

    Chen L, Wang W, Peng L. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater[J]. Environ Exp Bot, 2005, 54(3):256-266.

    [9]

    Krauss KW, Young PJ, Chambers JL, Doyle TW, Twilley RR. Sap flow characteristics of neotropical mangroves in flooded and drained soils[J]. Tree Physiol, 2007, 27(5):775-783.

    [10] 阎光宇, 冯建祥, 杨盛昌, 林光辉. 中国漳江口红树植物秋茄茎流特征及其影响因子[J]. 应用生态学报, 2016, 27(7):2048-2058.

    Yan GY, Feng JX, Yang SC, Lin GH. Sapflow characteristics of Kandelia obovata and their controlling factors in Zhangjiang estuary, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2048-2058.

    [11]

    Liang S, Zhou R, Dong S, Shi S. Adaptation to salinity in mangroves:Implication on the evolution of salt-tolerance[J]. Chinese Science Bulletin, 2008, 53(11):1708-1715.

    [12]

    Augustinus PGEF. Geomorphology and sedimentology of mangroves[M]//Perillo GME, ed. Developments in Sedimentology:Vol 53. Amsterdam:Elsevier Science, 1995.

    [13]

    Castañeda-Moya E, Rivera-Monroy VH, Twilley RR. Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras[J]. Estuaries Coasts, 2006, 29(5):751-764.

    [14] 邱凤英, 廖宝文, 蒋燚. 半红树植物海檬果幼苗耐盐性研究[J]. 防护林科技, 2010(5):5-9.

    Qiu FY, Liao BW, Jiang Y. Salt tolerance of semi-mangrove plant Cerbera manghas seedlings[J]. Protection Forest Science and Technology, 2010(5):5-9.

    [15] 邱凤英, 廖宝文, 肖复明. 半红树植物杨叶肖槿幼苗耐盐性研究[J]. 林业科学研究, 2011, 24(1):51-55.

    Qiu FY, Liao BW, Xiao FM. Salt tolerance of semi-mangrove plant Thespesia populnea seedlings[J]. Forest Research, 2011, 24(1):51-55.

    [16] 张乔民, 张叶春. 华南红树林海岸生物地貌过程研究[J]. 第四纪研究, 1997, 17(4):344-353.

    Zhang QM, Zhang YC. Study on biogeomorphologic process of mangrove coasts in south China[J]. Quaternary Sciences, 1997, 17(4):344-353.

    [17]

    Cintron G, Lugo AE, Pool DJ, Morris G. Mangroves of arid environments in Puerto Rico and Adjacent Islands[J]. Biotropica, 1978, 10(2):110-121.

    [18]

    Nguyen HT, Meir P, Sack L, Evans JR, Oliveira RS, Ball MC. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina:integration of leaf structure, osmotic adjustment and access to multiple water sources[J]. Plant Cell Environ, 2017, 40(8):1576-1591.

    [19]

    Sternberg L, Ishshalomgordon N, Ross M, O'Brien J. Water relations of coastal plant communities near the ocean/freshwater boundary[J]. Oecologia, 1991, 88(3):305-310.

    [20] 司怀通. 红树林植物气孔对环境因子的响应特点[D]. 南宁:广西大学, 2017.
    [21]

    Jiang GF, Goodale UM, Liu YY, Hao GY, Cao KF. Salt management strategy defines the stem and leaf hydraulic characteristics of six mangrove tree species[J]. Tree Physiol, 2017, 37(3):389-401.

    [22]

    Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, et al. Water relations of coastal and estuarine Rhizophora mangle:xylem pressure potential and dynamics of embolism formation and repair[J]. Oecologia, 2001, 126(2):182-192.

    [23]

    Becker P, Asmat A, Mohamad J, Moksin M, Tyree MT. Sap flow rates of mangrove trees are not unusually low[J]. Trees, 1997, 11(7):432-435.

    [24]

    López-Portillo J, Ewers FW, Angeles G. Sap salinity effects on xylem conductivity in two mangrove species[J]. Plant Cell Environ, 2010, 28(10):1285-1292.

    [25]

    Hubeau M, Vandegehuchte MW, Guyot A, Lovelock CE, Lockington DA, Steppe K. Plant-water relations of the mangrove species Rhizophora stylosa:a unique story[J]. Commun Agric Appl Biol Sci, 2014, 79(1):57-63.

    [26]

    Waisel Y, Eshel A, Agami M. Salt balance of leaves of the mangrove Avicennia marina[J]. Physiologia Plantarum, 2010, 67(1):67-72.

    [27]

    Vandegehuchte M, Guyot A, Hubeau M, Groote S, Baerdemaeker N, et al. Long-term versus daily stem diameter variation in co-occurring mangrove species:environmental versus ecophysiological drivers[J]. Agric For Meteorol, 2014, 192-193(8):51-58.

    [28] 雷泽湘, 林鹏. 秋茄幼枝水势动态及其与生态因子的关系[J]. 厦门大学学报(自然科学版), 1996, 35(2):276-282.

    Lei ZX, Lin P. Relationship between the dynamics of water potential in twig of Kandelia obovata and ecological factors[J]. Journal of Xiamen University(Natural Science), 1996, 35(2):276-282.

    [29]

    Sobrado MA, Ewe SML. Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coe-xisting in a scrub mangrove forest at the Indian River Lagoon, Florida[J]. Trees, 2006, 20(6):679-687.

    [30]

    Schmitz N, Egerton JJ, Lovelock CE, Ball MC. Light-dependent maintenance of hydraulic function in mangrove branches:do xylary chloroplasts play a role in embolism repair?[J]. New Phytol, 2012, 195(1):40-46.

    [31]

    Walker W. The role of leaf hydraulics in the photosynthetic performance of the mangrove Avicennia marina growing in seawater and hyper-saline habitats[D]. Canberra:The Australian National University, 2014.

    [32]

    Ewers FW, Lopez-Portillo J, Angeles G, Fisher JB. Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa[J]. Tree Physiol, 2004, 24(9):1057-1062.

    [33]

    Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenezcastillo M, et al. Hydraulic differences along the water transport system of South American Nothofagus species:do leaves protect the stem functionality?[J]. Tree Phy-siol, 2012, 32(7):880-893.

    [34]

    Choat B, Sack L, Holbrook NM. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation[J]. New Phytol, 2007, 175(4):686-698.

    [35]

    Bartlett MK, Klein T, Jansen S, Choat B, Sack L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought[J]. Proc Natl Acad Sci USA, 2017, 113(46):13098-13103.

    [36] 邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 等. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1):90-99.

    Deng CY, Xin GL, Zhang WC, Guo SZ, Xue QH, et al. SEM observations and measurements of vestured pits of the secondary xylem in the tribe Rhizophoreae[J]. Chinese Bulletin of Botany, 2015, 50(1):90-99.

    [37]

    Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels:the role of sucrose as a trigger for refilling[J]. Plant Cell Environ, 2011, 34(3):514-524.

    [38] 邓传远, 郑俊鸣, 张万超, 郭素枝, 薛秋华, 等. 红海榄木材结构的生态解剖[J]. 植物生态学报, 2015, 39(6):604-615.

    Deng CY, Zheng JM, Zhang WC, Guo SZ, Xue QH, et al. Ecological wood anatomy of Rhizophora stylosa[J]. Chinese Journal of Plant Ecology, 2015, 39(6):604-615.

    [39] 郭素枝, 林鹏, 邓传远. 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应[J]. 植物生态学报, 2004, 28(3):392-399.

    Guo SZ, Lin P, Deng CY. Wood structures of some Sonneratia species and their adaptation to intertidal habitats[J]. Chinese Journal of Plant Ecology, 2004, 28(3):392-399.

    [40] 辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 白骨壤次生木质部生态解剖学研究[J]. 植物分类与资源学报, 2015, 37(5):522-530.

    Xin GL, Zheng JM, Ye ZY, Zhang WC, Deng CY. Ecolo-gical wood anatomy of Avicennia marina[J]. Plant Diversity, 2015, 37(5):522-530.

    [41]

    Carlquist S. Comparative Wood Anatomy[M]. 2nd ed. Berlin:Springer, 2001, 35(6):67.

    [42]

    Reef R, Lovelock CE. Regulation of water balance in mangroves[J]. Ann Bot, 2015, 115(3):385-395.

    [43]

    Robert EMR, Koedam N, Beeckman H, Schmitz N. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora[J]. Funct Ecol, 2010, 23(4):649-657.

    [44]

    Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N. Influence of a salinity gradient on the vessel cha-racters of the mangrove species Rhizophora mucronata[J]. Ann Bot, 2006, 98(6):1321-1330.

    [45]

    Lechthaler S, Robert EMR, Tonné N, Prusova A, Gerkema E, et al. Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes[J]. Front Plant Sci, 2016, 7(6):1-13.

    [46]

    Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. Changes in pit membrane porosity due to deflection and stretching:the role of vestured pits[J]. J Exp Bot, 2004, 55(402):1569-1575.

    [47]

    Rada F, Goldstein G, Orozco A, Montilla M, Zabala O, Azocar A. Osmotic and turgor relations of three mangrove ecosystem species[J]. Funct Plant Biol, 1989, 16(6):477-486.

    [48]

    Suárez N, Sobrado MA, Medina E. Salinity effects on the leaf water relations components and ion accumulation patterns in Avicennia germinans (L.) L. seedlings[J]. Oecologia, 1998, 114(3):299-304.

    [49]

    Suárez N, Sobrado MA. Adjustments in leaf water relations of mangrove (Avicennia germinans) seedlings grown in a salinity gradient[J]. Tree Physiol, 2000, 20(4):277-282.

    [50]

    Hao GY, Jones TJ, Luton C, Zhang YJ, Manzane E, et al. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients:impacts on hydraulic architecture and gas exchange[J]. Tree Physiol, 2009, 29(5):697-705.

    [51] Zafar Siddiq. 热带北缘季节性气候下常绿与落叶用材树种的蒸腾耗水与调控策略[D]. 北京:中国科学院大学, 2016.
    [52] 王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾叶桉和湿加松人工林的蒸腾耗水规律[J]. 生态学报, 2019, 39(6):2147-2155.

    Wang ZC, Xu YX, Zhu WK, Du AP. The transpiration water consumption of two common fast-growing forests in Leizhou Peninsula[J]. Acta Ecologica Sinica, 2019, 39(6):2147-2155.

    [53]

    Krauss KW, Barr JG, Engel V, Fuentes JD, Wang H. Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA[J]. Agric For Meteorol, 2015, 213(2015):291-303.

    [54] 阎光宇. 潮汐活动对亚热带地区红树林生态系统水热平衡的影响[D]. 厦门:厦门大学, 2012.
    [55]

    Zhang JL, Cao KF. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Funct Ecol, 2010, 23(4):658-667.

    [56] 李婕, 刘楠, 任海, 申卫军, 简曙光. 7种植物对热带珊瑚岛环境的生态适应性[J]. 生态环境学报, 2016, 25(5):790-794.

    Li J, Liu N, Ren H, Shen WJ, Jian SG. Ecological adap-tability of seven plant species to tropical coral island habitat[J]. Ecology and Environmental Sciences, 2016, 25(5):790-794.

    [57]

    Clough BF, Sim RG. Changes in gas exchange characte-ristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit[J]. Oecologia, 1989, 79(1):38-44.

    [58] 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳. 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响[J]. 植物科学学报, 2016, 34(6):909-919.

    Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF. Impact of leaf morphological and anatomical traits on mesophyll conductance and leaf hydraulic conductance in mangrove plants[J]. Plant Science Journal, 2016, 34(6):909-919.

    [59]

    Sobrado MA. Drought effects on photosynthesis of the mangrove, Avicennia germinans, under contrasting salinities[J]. Trees, 1999, 13(3):125-130.

    [60]

    Nguyen HT, Meir P, Wolfe J, Mencuccini M, Ball MC. Plumbing the depths:extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure-volume relationship[J]. Plant Cell Environ, 2016, 40(7):1021-1038.

    [61]

    Limousin JM, Rambal S, Ourcival JM, Rodríguez-Calcerrada J, Pérez-Ramos IM, et al. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought[J]. Oecologia, 2012, 169(2):565-577.

    [62]

    Krauss KW, Lovelock CE, Mckee KL, Lópezhoffman L, Ewe SML, et al. Environmental drivers in mangrove establishment and early development:a review[J]. Aquat Bot, 2008, 89(2):105-127.

    [63]

    Granier A, Huc R, Barigah ST. Transpiration of natural rainforest and its dependence on climatic factors[J]. Agric For Meteorol, 1996, 78(78):19-29.

    [64] 牟美蓉, 蒋巧兰, 王文卿. 真红树和半红树植物叶片氯含量及叶性状的比较[J]. 植物生态学报, 2007, 31(3):497-504.

    Mu MR, Jiang QL, Wang WQ. Comparisons of leaf chloride content and leaf traits between true mangrove plants and semi-mangrove plants[J]. Chinese Journal of Plant Ecology, 2007, 31(3):497-504.

    [65] 朱芸菲. 红树植物木质部与叶片解剖特征研究[D]. 合肥:中国科学技术大学, 2014.
    [66] 王文卿, 林鹏. 红树植物体内元素分布特点与抗盐机理[J]. 林业科学, 2003, 39(4):30-36.

    Wang WQ, Lin P. Element distribution in mangroves and sale tolerant mechanism[J]. Scientia Silvae Sinicae, 2003, 39(4):30-36.

  • 期刊类型引用(1)

    1. 盘远方,邱广龙,苏治南,邱思婷,潘良浩,范航清. 红树林人工幼林与天然成熟林叶经济谱的区别和联系. 广西科学院学报. 2024(03): 241-247 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  707
  • HTML全文浏览量:  21
  • PDF下载量:  706
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2020-01-11
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-08-27

目录

    /

    返回文章
    返回