Structure and phylogenetic analysis of the Pseudotaxus chienii (W. C. Cheng) W. C. Cheng chloroplast genome
-
摘要: 以红豆杉科单种属植物白豆杉(Pseudotaxus chienii (W.C.Cheng) W.C.Cheng)为材料,进行叶绿体全基因组测序,并对其基因含量、结构及重复序列进行分析。结果显示:白豆杉叶绿体基因组不包含典型的反向重复区,基因组全长为130 427 bp,共编码116个基因,包含83个蛋白编码基因、4个rRNA基因和29个tRNA基因;其叶绿体基因组包含44个简单重复序列和11个串联重复序列。系统发育关系分析结果表明,红豆杉科和三尖杉科互为姐妹群;在红豆杉科内部,白豆杉属(Pseudotaxus)与红豆杉属(Taxus)亲缘关系较近,榧树属(Torreya)与穗花杉属(Amentotaxus)聚为一支。红豆杉科8种植物的叶绿体基因组结构比较结果显示,红豆杉属与白豆杉属的叶绿体基因组结构基本一致,红豆杉科其他属之间存在不同程度的重排。研究结果表明采用叶绿体基因组数据可以较好地解决红豆杉科植物的系统发育关系。Abstract: The complete chloroplast genome sequence of Pseudotaxus chienii (W. C. Cheng) W. C. Cheng was determined in this study. Gene content, genome structure, and repeat sequences were also analyzed. Results revealed that the chloroplast genome did not contain typical inverted repeats. The genome was 130 427 bp in length, containing 83 protein coding, four rRNA, and 29 tRNA genes. Forty-four simple sequence repeat loci and 13 tandem repeats were identified in the chloroplast genome of P. chienii. Phylogenetic analysis supported Taxaceae as sister to Cephalotaxaceae. Within Taxaceae, Pseudotaxus and Taxus formed a monophyletic group, while Torreya and Amentotaxus clustered together. The alignment of eight Taxaceae species showed that the chloroplast genome organization of P. chienii was highly similar to that of Taxus, while rearrangement also existed between different genera of Taxaceae. Thus, these results indicate that chloroplast genome data can better solve the phylogenetic relationships of Taxus plants.
-
Keywords:
- Taxaceae /
- Pseudotaxus chienii /
- Chloroplast genome /
- Phylogeny
-
-
[1] 傅立国. 中国植物红皮书:稀有濒危植物(第1册)[M]. 北京:科学出版社,1992:138. [2] 张文秀, 寇一翾, 张丽, 曾卫东, 张志勇.采用生态位模拟预测濒危植物白豆杉5个时期的适宜分布区[J].生态学杂志,2020, 39(2):600-613. Zhang WX, Kou YX, Zhang L, Zeng WD, Zhang ZY. Suitable distribution of endangered species Pseudotaxus chienii (Cheng) Cheng (Taxaceae) in five periods using niche modeling[J]. Chinese Journal of Ecology, 2020, 39(2):600-613.
[3] 符潮, 刘倩, 孔思佳, 储蓄, 郑飞雄, 等. 白豆杉在江西的地理分布及其群落的特征分析[J]. 赣南师范大学学报, 2017, 38(6):127-130. Fu C, Liu Q, Kong SJ, Chu X, Zheng FX, et al. The cha-racteristic analysis and geographical distribution of Pseu-dotaxus chienii (Cheng) Cheng in Jiangxi province[J]. Journal of Gannan Normal University, 2017, 38(6):127-130.
[4] Su YJ, Wang T, Ouyang PY. High genetic differentiation and variation as revealed by ISSR marker in Pseudotaxus chienii (Taxaceae), an old rare conifer endemic to China[J]. Biochem Syst Ecol, 2009, 37(5):579-588.
[5] Deng Q, Su YJ, Wang T. Microsatellite loci for an old rare species, Pseudotaxus chienii, and transferability in Taxus wallichiana var. mairei (Taxaceae)[J]. Appl Plant Sci, 2013, 1(5):1200456.
[6] Deng Q, Zhang HR, He YP, Wang T, Su YJ. Chloroplast microsatellite markers for Pseudotaxus chienii developed from the whole chloroplast genome of Taxus chinensis var. mairei (Taxaceae)[J]. Appl Plant Sci, 2017, 5(3):1600153.
[7] Chaw SM, Wu CS, Sudianto E. Evolution of gymnosperm plastid genome[J]. Adv Bot Res, 2018, 85:195-222.
[8] Zhu A, Guo W, Gupta S, Fan WS, Jeffrey PM. Evolutio-nary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates[J]. New Phytol, 2016, 209(4):1747-1756.
[9] Yang X, Zhou T, Su X, Wang G, Zhang X, et al. Structu-ral characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms[J]. J For Res, 2020, 31(2):1-14
[10] Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements, repeats, and codon usage[J]. Mol Biol Evol, 2011, 28(1):583-600.
[11] Cai Z, Guisinger M, Kim HG, Ruck E, Blazier JC, et al. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions[J]. J Mol Evol, 2008, 67(6):696-704.
[12] Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, et al. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution[J]. Genome Biol Evol, 2014, 6(3):580-590.
[13] Wu CS, Chaw SM. Highly rearranged and size-variable chloroplast genomes in conifersⅡ clade (cupressophytes):evolution towards shorter intergenic spacers[J]. Plant Biotechnol J, 2014, 12(3):344-353.
[14] Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes[J]. PLoS One, 2014, 9:e107679.
[15] Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S. Hemisphere-scale differences in conifer evolutionary dynamics[J]. Proc Natl Acad Sci USA, 2012, 109(40):16217-16221.
[16] Cheng Y, Nicolson RG, Tripp K, Chaw SM. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region[J]. Mol Phylogenet Evol, 2000, 14(3):353-365.
[17] Ran JH, Gao H, Wang XQ. Fast evolution of the retroprocessed mitochondrial rps3 gene in ConiferⅡ and further evidence for the phylogeny of gymnosperms[J]. Mol Phylogenet Evol, 2010, 54(1):136-149.
[18] Quinn GJ, Price RA, Gader PA. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons[J]. Kew Bull, 2002, 57(3):513-531.
[19] Ghimire B, Heo K. Cladistic analysis of Taxaceae s.l[J]. Plant Syst Evol, 2013, 300:217-223.
[20] Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase[J]. Phytotaxa, 2016, 261(3):201-217.
[21] Li J, Gao L, Tao K, Su YJ, Wang T. The complete chloroplast genome sequence of Amentotaxus argotaenia (Taxaceae)[J]. Mitochondrial DNA, 2015, 27(4):2919-2920.
[22] Tao K, Gao L, Li J, Chen SS, Su YJ, Wang T. The complete chloroplast genome of Torreya fargesii (Taxaceae)[J]. Mitochondrial DNA, 2016, 27(5):3512-3513.
[23] Li J, Gao L, Chen SS, Tao K, Su YJ, Wang T. Evolution of short inverted repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillate and phylogenetics position of Sciadopityaceae[J]. Sci Rep, 2016, 6:20934.f
[24] Wang LL, Shi YL, Wang CX, Li X.The complete chloroplast genome of the white-berry yew Pseudotaxus chienii (Cupressales:Taxaceae), a rare and endangered relict plant endemic to southern China[J].Mitochondrial DNA, 2019, 4(1):760-761.
[25] Zhang X, Zhang HJ, Landis JB, Deng T, Meng AP, et al.Plastome phylogenomic analysis of Torreya (Taxaceae)[J]. J Syst Evol, 2019, 57(6):607-615.
[26] Zerbino DR, Birney E. Velvet:algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Res, 2008, 18(5):821-829.
[27] Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Curr Genet, 2007, 52(5-6):267-274.
[28] Darling AE, Mau B, Perna NT. ProgressiveMauve:multiple genome alignment with gene gain, loss and rearrangement[J]. PLoS One, 2010, 5(6):e11147.
[29] Fu CN, Wu CS, Ye LJ, Mo ZQ, Liu J, et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide[J]. Sci Rep, 2019, 9(1):2773.
[30] Yi X, Gao L, Wang B, Su YJ, Wang T. The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae):evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inver-ted repeat copies in gymnosperms[J]. Genome Biol Evol, 2013, 5(4):688-698.
[31] Hsu CY, Wu CS, Chaw SM. Birth of four chimeric plastid gene clusters in Japanese umbrella pine[J]. Genome Biol Evol, 2016, 8(6):1776-1784.
[32] Li J, Su YJ, Wang T. The repeat sequences and elevated substitution rates of the chloroplast accD gene in Cupres-sophytes[J]. Front Plant Sci, 2018, 9:553.
[33] Majeed A, Singh A, Choudhary S, Bhardwaj P. RNAseq-based phylogenetic reconstruction of Taxaceae and Cephalotaxaceae[J]. Cladistics, 2018:1-8.
[34] Tomlinson PB, Zacharias EH. Phyllotaxis, phenology and architecture in Cephalotaxus,Torreya and Amentotaxus (Coniferales)[J]. Bot J Linn Soc, 2001, 135(3):215-228.
[35] Elpe C, Knopf P, Stützel T, Schulz C. Diversity and evolution of leaf anatomical characters in Taxaceae s.l.-fluorescence microscopy reveals new delimitating characters[J]. J Plant Res, 2018, 131(1):125-141.
[36] Ghimire B, Jeong MJ, Lee C, Heo K. Inclusion of Cephalotaxus in Taxaceae:evidence from morphology and anatomy[J]. Korean J Pl Taxon, 2018, 48(2):109-114.
[37] Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW. A new classification and linear sequence of extant gymnosperms[J]. Phytotaxa, 2011, 19:55-70.
-
期刊类型引用(4)
1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 714
- HTML全文浏览量: 4
- PDF下载量: 950
- 被引次数: 5