高级检索+

基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析

陈飞飞, 姬亚丽, 陈忠海, 刘泰龙, 刘星

陈飞飞, 姬亚丽, 陈忠海, 刘泰龙, 刘星. 基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析[J]. 植物科学学报, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050
引用本文: 陈飞飞, 姬亚丽, 陈忠海, 刘泰龙, 刘星. 基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析[J]. 植物科学学报, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050
Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050
Citation: Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. DOI: 10.11913/PSJ.2095-0837.2021.10050
陈飞飞, 姬亚丽, 陈忠海, 刘泰龙, 刘星. 基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析[J]. 植物科学学报, 2021, 39(1): 50-58. CSTR: 32231.14.PSJ.2095-0837.2021.10050
引用本文: 陈飞飞, 姬亚丽, 陈忠海, 刘泰龙, 刘星. 基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析[J]. 植物科学学报, 2021, 39(1): 50-58. CSTR: 32231.14.PSJ.2095-0837.2021.10050
Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. CSTR: 32231.14.PSJ.2095-0837.2021.10050
Citation: Chen Fei-Fei, Ji Ya-Li, Chen Zhong-Hai, Liu Tai-Long, Liu Xing. Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau[J]. Plant Science Journal, 2021, 39(1): 50-58. CSTR: 32231.14.PSJ.2095-0837.2021.10050

基于RNA-seq技术的青藏高原不同海拔水毛茛转录组测序及基因表达分析

基金项目: 

国家自然科学基金项目(31860046)。

详细信息
    作者简介:

    陈飞飞(1994-),男,硕士研究生,研究方向为青藏高原生物多样性与分子进化(E-mail:1922615045@qq.com)。

    通讯作者:

    刘星,E-mail:xingliu@whu.edu.cn

  • 中图分类号: Q943.2

Transcriptome sequencing and expression analysis of Batrachium bungei (Steud.) L. Liou at different altitudes based on RNA-seq in the Qinghai-Tibet Plateau

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31860046).

  • 摘要: 以青藏高原不同海拔7个居群的水毛茛(Batrachium bungei (Steud.) L.Liou)为材料,对其进行转录组测序及基因表达分析,研究它们在极端环境下基因表达方面的适应性。结果显示,7个居群内样本间的基因表达具有较高的相似性。差异基因富集分析结果发现苯丙烷生物合成相关基因在5个差异组中均呈显著富集;此外类黄酮、类胡萝卜素、苯丙氨酸、酪氨酸、色氨酸的生物合成以及激素的信号转导、MAPK信号通路、植物与病原菌互作等相关基因大多被显著富集。与低海拔居群相比,参与类黄酮生物合成通路的相关基因(HHT1、HCT、F3'H、CHS、CYP73A、CCOAOMT5、CYP98A)在高海拔居群中均显著上调表达。研究结果表明水毛茛主要通过多途径的参与及关键基因的调控表达来适应青藏高原的高海拔环境。
    Abstract: We explored how Batrachium bungei (Steud.) L. Liou has adapted to extreme high-altitude environments. We used transcriptome sequencing and bioinformatics analysis of seven populations of B. bungei (ML, MZ, WQ, YH, YBJ, XB, ZR). Based on Pearson correlation analysis and principal component analysis (PCA), results showed that the gene expression of each population was highly similar. Differential gene enrichment analysis showed that phenylpropanoid biosynthesis was significantly enriched in five different groups. In addition, flavonoid biosynthesis, carotenoid biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, plant hormone signaling transduction, MAPK signaling pathway, and plant-pathogen interaction were significantly enriched. Compared with low-altitude populations, flavonoid biosynthesis genes (HHT1, HCT, F3'H, CHS, CYP73A, CCOAOMT5, CYP98A) were significantly up-regulated in the high-altitude populations, and their expression levels were significantly higher than those in the low-altitude (MZ) population. These results indicate that B. bungei adapted to the high-altitude environment of the Qinghai-Tibet Plateau mainly through multi-pathway participation and the regulation and expression of key genes.
  • [1]

    Zhang T, Qiao Q, Novikova PY, Qia Wang, Yue JP, et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude[J]. Proc Natl Acad Sci USA, 2019, 116(14):7137-7146.

    [2]

    Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63.

    [3]

    Stark R, Grzelak M, Hadfield J. RNA sequencing:the teenage years[J]. Nat Rev Genet, 2019, 20(11):631-656.

    [4]

    Mutz KO, Heilkenbrinker A, Lonne M, Walter JG, Stahl F, et al. Transcriptome analysis using next-generation sequencing[J]. Curr Opin Biotechnol, 2013, 24(1):22-30.

    [5]

    Sharma R, Singh G, Bhattacharya S, Singh A. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress[J]. PLoS One, 2018, 13(9):e203266.

    [6]

    Yang X, Zhao T, Rao P, Gao K, Yang X, et al. Transcriptome profiling of Populus tomentosa under cold stress[J]. Ind Crops Prod, 2019, 135:283-293.

    [7]

    Xing S, Tao C, Song Z, Liu W, Yan J, et al. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius[J]. Plant Mol Biol, 2018, 97(6):489-506.

    [8]

    Li Q, Qin Y, Hu X, Li GC, Ding HY, et al. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.)[J]. Sci Rep, 2020, 10(1):5411.

    [9]

    Zhang M, Hong LZ, Gu MF, Wu CD, Zhang G. Transcriptome analyses revealed molecular responses of Cynanchum auriculatum leaves to saline stress[J]. Sci Rep, 2020, 10(1):449.

    [10]

    Wang F, Xu Z, Fan X, Zhou Q, Cao J, et al. Transcriptome analysis reveals complex molecular mechanisms underlying UV tolerance of wheat (Triticum aestivum L.)[J]. J Agric Food Chem, 2019, 67(2):563-577.

    [11]

    Du J, Wang S, He C, Zhou B, Ruan YL, et al. Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis[J]. J Exp Bot, 2017, 68(8):1955-1972.

    [12]

    Soltani HM, Sadat NS, Shariati JV, Amiripour M. Compa-rative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L.[J]. Sci Rep, 2018, 8(1):13405.

    [13]

    Lei ZX, Zhou CH, Ji XY, Wei G, Huang YC, et al. Transcriptome analysis reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations[J]. Sci Rep, 2018, 8(1):6373.

    [14]

    Ma L, Sun XD, Kong XX, Valero GJ, Li X, et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau[J]. J Proteomics, 2015, 112:63-82.

    [15]

    Qiao Q, Wang Q, Han X, Guan YL, Sun H, et al. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau[J]. Sci Rep, 2016, 6(1):21729.

    [16]

    Yang YQ, Li X, Kong XX, Ma L, Hu XY, et al. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau[J]. Funct Integr Genomics, 2015, 15(3):295-307.

    [17]

    Wang YH, Chen JM, Xu C, Liu X,Wang QF. Population genetic structure of an aquatic herb Batrachium bungei(Ranuculaceae) in the Hengduan Mountains of China[J]. Aquat Bot, 2010, 92(3):221-225.

    [18]

    Chen JM, Du ZY, Yuan YY, Wang QF. Phylogeography of an alpine aquatic herb Ranunculus bungei (Ranuncula-ceae) on the Qinghai-Tibet Plateau[J]. J Syst Evol, 2014, 52(3):313-325.

    [19]

    Chen LY, Zhao SY, Wang QF, Moody ML. Transcriptome sequencing of three Ranunculus species (Ranuncula-ceae) reveals candidate genes in adaptation from terrestrial to aquatic habitats[J]. Sci Rep, 2015, 5:10098.

    [20]

    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thomposon DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.

    [21]

    Li W, Godzik A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1659.

    [22]

    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.

    [23]

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550.

    [24]

    Wang ZB, Yu QB, Shen WX, Zhao XC, Mohtar CA, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J]. BMC Plant Biol, 2018, 18(1):189.

    [25]

    Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling[J]. Physiol Plant, 2010, 138(4):405-413.

    [26]

    Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, et al. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress[J]. Molecules, 2019, 24(13):2452.

    [27]

    Llorente B. Regulation of carotenoid biosynthesis in photosynthetic organs[J]. Subcell Biochem, 2016, 79:141-160.

    [28]

    Zeng XQ, Yuan HG, Dong XK, Peng M, Jing XY, et al. Genome-wide dissection of co-selected UV-B responsive pathways in the UV-B adaptation of qingke[J]. Mol Plant, 2020, 13(1):112-127.

    [29]

    Gong ZZ, Xiong LM, Shi HZ, Yang SH, Xu GH, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5):635-674.

    [30]

    Wasternack C. Jasmonates:an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Ann Bot, 2007, 100(4):681-697.

    [31]

    Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M, et al. Stress-induced flavonoid biosynthesis and the antio-xidant machinery of plants[J]. Plant Signal Behav, 2011, 6(5):709-711.

    [32]

    Falcone FM, Rius SP, Casati P. Flavonoids:biosynthesis, biological functions, and biotechnological applications[J]. Front Plant Sci, 2012, 3:222.

    [33]

    Kirk RAH, Plunkett B, Hall M, McFhie T, Allan AC, et al. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica)[J]. Plant Cell Environ, 2018, 41(3):675-688.

    [34]

    Zhang Q, Liu M, Ruan J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J]. BMC Plant Biol, 2017, 17(1):64.

  • 期刊类型引用(4)

    1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
    2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
    3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
    4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  624
  • HTML全文浏览量:  5
  • PDF下载量:  464
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-06-17
  • 修回日期:  2020-09-29
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-02-27

目录

    /

    返回文章
    返回