高级检索+

重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析

李金明, 叶玉媛, 刘锦春

李金明, 叶玉媛, 刘锦春. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76-84. DOI: 10.11913/PSJ.2095-0837.2021.10076
引用本文: 李金明, 叶玉媛, 刘锦春. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76-84. DOI: 10.11913/PSJ.2095-0837.2021.10076
Li Jin-Ming, Ye Yu-Yuan, Liu Jin-Chun. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76-84. DOI: 10.11913/PSJ.2095-0837.2021.10076
Citation: Li Jin-Ming, Ye Yu-Yuan, Liu Jin-Chun. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76-84. DOI: 10.11913/PSJ.2095-0837.2021.10076
李金明, 叶玉媛, 刘锦春. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76-84. CSTR: 32231.14.PSJ.2095-0837.2021.10076
引用本文: 李金明, 叶玉媛, 刘锦春. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76-84. CSTR: 32231.14.PSJ.2095-0837.2021.10076
Li Jin-Ming, Ye Yu-Yuan, Liu Jin-Chun. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76-84. CSTR: 32231.14.PSJ.2095-0837.2021.10076
Citation: Li Jin-Ming, Ye Yu-Yuan, Liu Jin-Chun. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76-84. CSTR: 32231.14.PSJ.2095-0837.2021.10076

重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析

基金项目: 

中央高校基本科研业务费专项(XDJK2020B037);国家自然科学基金项目(31500399)。

详细信息
    作者简介:

    李金明(1997-),女,硕士研究生,研究方向为植物生态学(E-mail:874018133@qq.com)。

    通讯作者:

    刘锦春,E-mail:jinchun@swu.edu.cn

  • 中图分类号: Q945.3

Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area

Funds: 

This work was supported by grants from the Special Funds for Basic Research in Central Universities (XDJK2020B037) and National Natural Science Foundation of China (31500399).

  • 摘要: 以6种复叶和7种单叶树种为材料,对叶内光合结构和支撑结构的生物量分配及异速生长关系在单叶和复叶树种中的变化规律进行研究。结果显示:单叶树种支撑结构的生物量投资比例显著大于复叶。单叶树种的支撑结构质量比与叶大小(叶面积和总叶干重)无明显的相关性,其光合结构与支撑结构呈等速生长关系;复叶树种的支撑结构质量比随叶大小的增加而增加,其光合结构与支撑结构呈显著的异速生长关系,且支撑结构的增长速率大于光合结构的增长速率。在物种水平上,同一叶类型植物不同物种的叶内支撑结构质量比和叶大小的关系呈不同的变化趋势。
    Abstract: In this study, six compound-leaf and seven single-leaf tree species were used as research materials. We explored the variations in biomass investment ratios between the photosynthetic and support structures in the leaves as well as the allometric growth relationship between the single-leaf and compound-leaf tree species. Results showed that the biomass investment ratio of the support structure of the single-leaf tree species was significantly greater than that of the compound-leaf tree species. No significant correlation was found between the support structure mass ratio of single-leaf tree species and leaf size (represented by leaf area and total leaf dry weight), and their photosynthetic and support structures showed an isometric growth relationship. However, the support structure mass ratio of the compound-leaf tree species increased with the increase in leaf size, and their photosynthetic and support structures showed a significant allometric growth relationship. Furthermore, the growth rate of the support structure was greater than that of the photosynthetic structure. In addition, at the species level, the relationship between the mass ratio of the support structure and leaf size in different species of the same leaf type showed different variation trends.
  • [1] 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10):971-979.

    Pan SA, Peng GQ, Yang DM. Biomass allocation strategies within a leaf:Implication for leaf size optimization[J]. Chinese Journal of Plant Ecology, 2015, 39(10):971-979.

    [2]

    Parkhurst DF, Loucks OL. Optimal leaf size in relation to environment[J]. J Ecol, 1972, 60(2):505-537.

    [3] 张海燕, 陈立明. 东北"三大硬阔"叶片和叶轴质量分配比较[J]. 东北林业大学学报, 2016, 44(6):33-35.

    Zhang HY, Chen LM. Comparison of biomass allocation between lamina and rachis in the "Three Hardwood Species" of northeast China[J]. Journal of Northeast Forestry University, 2016, 44(6):33-35.

    [4]

    Pearcy RW, Yang W. The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolorHook[J]. Funct Ecol, 1998,12(4):543-552.

    [5]

    Niklas KJ. A mechanical perspective on foliage leaf form and function[J]. New Phytol, 1999, 143(1):19-31.

    [6] 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 等. 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J]. 植物生态学报, 2011, 35(7):687-698.

    Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, et al. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types[J]. Chinese Journal of Plant Ecology, 2011, 35(7):687-698.

    [7]

    Takenaka A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot[J]. Ecol Res, 1994, 9(2):109-114.

    [8]

    Niinemets V, Portsmuth A, Tobias M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants[J]. New Phytol, 2006, 171(1):91-104.

    [9]

    Li GY, Yang DM, Sun SC. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude[J]. Funct Ecol, 2008, 22(4):557-564.

    [10] 徐婷. 张掖湿地旱柳叶脉性状与叶水力性状的关系分析[D]. 兰州:西北师范大学,2017:26-27.
    [11]

    Niinemets V. Are compound-leaved woody species inhe-rently shade-intolerant? An analysis of species ecological requirements and foliar support costs[J]. Plant Ecol, 1998, 134(1):1-11.

    [12]

    Niinemets V, Kull O. Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees[J]. Tree Physiol, 1999, 19(6):349-358.

    [13] 韩文轩, 方精云. 幂指数异速生长机制模型综述[J].植物生态学报,2008, 32(4):951-960.

    Han WX, Fang JY. Review on the mechanism models of allometric scaling laws[J]. Journal of Plant Ecology, 2008,32(4):951-960.

    [14]

    Sun SC, Jin DW, Shi PL. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J]. Ann Bot, 2006, 97(1):97-107.

    [15] 李钰, 赵成章, 侯兆疆, 马小丽, 张茜. 高寒退化草地狼毒种群个体大小与茎、叶的异速生长[J]. 生态学杂志, 2013, 32(2):241-246.

    Li Y, Zhao CZ, Hou ZJ, Ma XL, Zhang Q. Body size and stem-and leaf allometry of Stellera chamaejasme in degraded alpine grassland[J]. Chinese Journal of Ecology, 2013, 32(2):241-246.

    [16]

    Niinemets V, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf la-mina in temperate species:a neglected source of leaf physiological differentiation?[J]. Funct Ecol, 2007, 21(1):28-40.

    [17] 杨冬梅,章佳佳,周丹,钱敏杰,郑瑶,金灵妙.木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702-713.

    Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM. Leaf and twig functional traits of woody plants and their relationships with environmental change:a review[J]. Chinese Journal of Ecology, 2012, 31(3):702-713.

    [18]

    Niinemets V, Al Afas N, Cescatti A, Pellis A, Ceulemans R. Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations[J]. Tree Physiol, 2004, 24(2):141-154.

    [19]

    Harvey PJ, Pagel MD. The Comparative Method in Evolutionary Biology[M]. Oxford:Oxford University Press, 1991:239.

    [20]

    Sun J, Fan R, Niklas KJ, Zhong QL, Yang FC, Li M, et al. "Diminishing returns" in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos, Southeast China[J]. Am J Bot, 2017, 104(7):993-998.

    [21]

    Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry[J]. Biol Rev, 2006, 81(2):259-291.

    [22] 李鑫,李昆,段安安,崔凯,高成杰.不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报,2019, 41(4):41-50.

    Li X, Li K, Duan AA, Cui K, Gao CJ. Biomass allocation and allometry of Pinus yunnanensisseedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4):41-50.

    [23]

    Falster DS, Warton DI, Wright IJ. User's guide to SMATR:Standardised Major Axis Tests & Routines Version 2.0, Copyright 2006.[EB/OL].[2020-05-25].http://www.bio.mq.edu.au/ecology/SMATR/.[BFY]

    [24]

    Warton DI, Weber NC. Common slope tests for bivariate errors-in-variables models[J]. Biom J, 2002, 44(2):161-174.

    [25]

    Yang DM, Li GY, Sun SC. The effects of leaf size, leaf habit, and leaf form on leaf/stem relationships in plant twigs of temperate woody species[J]. J Veg Sci, 2009, 20(2):359-366.

    [26]

    Yang DM, Niklas KJ, Xiang S, Sun SC. Size-dependent leaf area ratio in plant twigs:Implication for leaf size optimization[J]. Ann Bot, 2010, 105(1):71-77.

    [27]

    Zeng B. Functional equilibrium between photosynthetic and above-ground nonphotosynthetic structures of plants:evidence from a pruning experiment with three subtropical tree species[J]. Acta Botanica Sinica, 2003, 45(2):152-157.

    [28]

    Niklas KJ, Cobb ED, Niinemets V, Reich PB, Sellin A, et al. "Diminishing returns" in the scaling of functional leaf traits across and within species groups[J]. Proc Natl Acad Sci USA, 2007, 104(21):8891-8896.

    [29] 张维, 任艳利, 赵玉, 亥依如拉木, 杨允菲, 李建东. 新疆野核桃不同小叶数复叶构件生物量可塑性及分配规律[J]. 东北林业大学学报, 2012, 40(7):37-40.

    Zhang W, Ren YL, Zhao Y, Hai Yirulamu, Yang YF, Li JD. Biomass plasticity and allocation rules for modules of compound leaves with a different number of leaflets on Juglans cathayensisin Xinjiang[J]. Journal of Northeast Forestry University, 2012, 40(7):37-40.

    [30]

    Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe mode theoryⅠ. Basic analyses[J]. Japanese J Ecol, 1964, 14(3):97-105.

    [31]

    Shinozaki K, Yoda K, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theoryⅡ. Further evidence of the theory and its application in forest ecology[J]. Japanese J Ecol, 1964, 14(4):133-139.

    [32]

    Niinemets V. Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa[J]. Vegetatio, 1996, 124(2):145-153.

    [33] 杨冬梅,毛林灿,彭国全.常绿和落叶阔叶木本植物小枝内生物量分配关系研究:异速生长分析[J]. 植物研究, 2011, 31(4):472-477.

    Yang DM, Mao LC, Peng GQ. Within-twig biomass allocation in evergreen and deciduous broad-leaved species:allometric scaling analyses[J]. Bulletin of Botanical Research, 2011, 31(4):472-477.

    [34]

    Niinemets V, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy[J]. Ann Bot, 2007, 100(2):283-303.

  • 期刊类型引用(4)

    1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
    2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
    3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
    4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  619
  • HTML全文浏览量:  1
  • PDF下载量:  541
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-06-17
  • 修回日期:  2020-08-15
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-02-27

目录

    /

    返回文章
    返回