高级检索+

作物抗倒伏相关性状及其信号转导调控机理的研究进展

白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑

白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑. 作物抗倒伏相关性状及其信号转导调控机理的研究进展[J]. 植物科学学报, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
引用本文: 白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑. 作物抗倒伏相关性状及其信号转导调控机理的研究进展[J]. 植物科学学报, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
Citation: Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑. 作物抗倒伏相关性状及其信号转导调控机理的研究进展[J]. 植物科学学报, 2021, 39(1): 102-109. CSTR: 32231.14.PSJ.2095-0837.2021.10102
引用本文: 白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑. 作物抗倒伏相关性状及其信号转导调控机理的研究进展[J]. 植物科学学报, 2021, 39(1): 102-109. CSTR: 32231.14.PSJ.2095-0837.2021.10102
Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. CSTR: 32231.14.PSJ.2095-0837.2021.10102
Citation: Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. CSTR: 32231.14.PSJ.2095-0837.2021.10102

作物抗倒伏相关性状及其信号转导调控机理的研究进展

基金项目: 

青海省农林科学院创新基金重点研发项目(2019-NKY-01);国家自然科学基金(32060483,31660388,31960427);国家重点研发计划(2019YFD1001705);国家现代农业产业技术体系(大麦青稞)建设专项(CAS-05);青海省青稞遗传育种重点实验室项目(2021-ZJ-Y13)。

详细信息
    作者简介:

    白羿雄(1990-),男,助理研究员,研究方向为植物分子生物学(E-mail:yixiongbai@163.com);赵小红(1995-),女,硕士研究生,研究方向为作物遗传育种(E-mail:825626698@qq.com)。

    通讯作者:

    吴昆仑,E-mail:wklqaaf@163.com

  • 中图分类号: Q943.2

Research progress on crop lodging resistance-related traits and mechanism of signal transduction

Funds: 

This work was supported by grants from the Qinghai Provincial Academy of Agriculture and Forestry Innovation Fund Key Research and Development Project (2019-NKY-01), National Natural Science Foundation of China (32060483

  • 摘要: 倒伏是影响作物品种选育和产业化推广的重要限制因子,会使作物籽粒与秸秆的产量和品质显著降低且易引发病虫害,不利于机械化收割使作物经济效益显著降低。株高、茎秆强度、壁厚、分蘖数、分蘖夹角等性状同作物茎秆抗倒伏特性密切相关。倒伏主要分为为根倒伏和茎倒伏,茎倒伏与茎秆特性相关,其中株高与分蘖数分别受赤霉素信号转导和独脚金内酯信号转导的调控;根部各性状主要受生长素、乙烯以及细胞分裂素等激素信号转导的调节。本文对植物抗倒伏相关性状与抗倒伏的关系以及各重要性状相关信号转导途径方面的研究进行综述,并对基于激素信号转导途径的作物抗倒伏性状改良和分子育种今后的研究方向进行了展望。
    Abstract: Lodging is an important limiting factor that affects the selection and industrialization of crop varieties. It can significantly reduce the yield and quality of crop grains and stalks, and increase the risk of pests and diseases, resulting in poorer mechanized harvesting and lower economic benefits. Plant height, stalk strength, stalk wall thickness, tillers, and tiller angle are all associated with lodging resistance of crop stalks. Lodging is mainly divided into root lodging and stem lodging. Stem lodging is primarily related to stalk characteristics, especially plant height and tillers, which are controlled by gibberellin signal transduction and strigolactone signal transduction respectively; root traits are regulated by hormone signaling pathways such as auxin, ethylene, and cytokinin. In this paper, we summarized the relationships among morphological characteristics and lodging resistance and signal transduction pathways to provide a theoretical reference for the genetic improvement of lodging resistance.
  • [1]

    Khobra R, Sareen S, Meena BK, Kumar A, Tiwari V, Singh GP. Exploring the traits for lodging tolerance in wheat genotypes:a review[J]. Physiol Mol Biol Plants, 2019, 25(3):589-600.

    [2]

    Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries[J]. Cellulose, 2016, 23(1):837-852.

    [3]

    Tang CC, Yang XL, Xie GH. Establishing sustainable sweet sorghum-based cropping systems for forage and bioenergy feedstock in North China Plain[J]. Field Crops Res, 2018, 227:144-154.

    [4]

    Kendall SL, Holmes H, White CA, Clarke SM, Berry PM. Quantifying lodging-induced yield losses in oilseed rape[J]. Field Crops Res, 2017, 211:106-113.

    [5]

    Rueda JA, Ortega-Jiménez E, Hernández-Garay A, Enríquez-Quiroz JF, Guerrero-Rodríguez JD, Quero-Carrillo AR. Growth, yield, fiber content and lodging resistance in eight varieties of Cenchrus purpureus (Schumach.) Morrone intended as energy crop[J]. Biomass Bioenergy, 2016, 88:59-65.

    [6]

    Fedenko JR, Erickson JE, Singh MP. Root lodging affects biomass yield and carbohydrate com position in sweet sorghum[J]. Ind Crops Prods, 2015, 74:933-938.

    [7]

    Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, et al. Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates[J]. Sci Rep, 2018, 8(1):634.

    [8]

    Jungers JM, DeHaan LR, Betts KJ, Sheaffer CC, Wyse DL. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization[J]. Agron J, 2017, 109(2):462-472.

    [9]

    Lee S, Jun TH, Michel AP, Mian MAR. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean[J]. Euphytica, 2015, 203(3):521-532.

    [10]

    Tumino G, Voorrips RE, Morcia C, Ghizzoni R, Germeier CU, et al. Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection[J]. Euphytica, 2017, 213(8):163-174.

    [11]

    Berry PM, Kendall S, Rutterford Z, Orford S, Griffiths S. Historical analysis of the effects of breeding on the height of winter wheat (Triticum aestivum) and consequences for lodging[J]. Euphytica, 2015, 203(2):375-383.

    [12]

    Hirano K, Okuno A, Hobo T, Ordonio R, Shinozaki Y, et al. Utilization of stiff culm trait of ricesmos1 mutant for increased lodging resistance[J]. PLoS One, 2014, 9(7):e96009.

    [13]

    Robertson DJ, Julias M, Lee SY, Cook DD. Maize stalk lodging:morphological determinants of stalk strength[J]. Crop Sci, 2017, 57(2):926-934.

    [14]

    Piñera-Chavez FJ, Berry PM, Foulkes MJ, Reynoldsb MP. Avoiding lodging in irrigated spring wheat.Ⅱ. Genetic va-riation of stem and root structural properties[J]. Field Crops Res, 2016, 196:64-74.

    [15]

    Zhu GL, Li GH, Wang DP, Yuan S, Wang F. Changes in the lodging-related traits along with rice genetic improvement in China[J]. PLoS One, 2016, 11(7):e0160104.

    [16]

    Xu CL, Gao YB, Tian BJ, Ren JH, Meng QF, Wang P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities[J]. Field Crops Res, 2017, 200:71-79.

    [17]

    Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, et al. New approach to incre asing rice lod-ging resistance and biomass yield through the use of high gibberellin producing varieties[J]. PLoS One, 2014, 9(2):e86870.

    [18]

    Wang C, Hu D, Liu XB, She HZ, Ruan RW, et al. Effects of uniconazole on the lignin metabolism and lodging resis-tance of culm in common buckwheat (Fagopyrum esculentum M.)[J]. Field Crops Res, 2015, 180:46-53.

    [19]

    Zheng MJ, Chen J, Shi YH, Li YX, Yin YP, et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat[J]. Sci Rep, 2017, 7:41805.

    [20]

    Wang C, Ruan RW, Yuan XH, Hu D, Yang H, et al. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat[J]. Plant Prod Sci, 2015, 18(2):218-227.

    [21]

    Hu D, Liu XB, She HZ, Gao Z, Ruan RW, et al. The lignin synthesis related genes and lodging resistance of Fagopyrum esculentum[J]. Biol Plant, 2017, 61(1):138-146.

    [22]

    Wei LJ, Jian HJ, Lu K, Yin NW, Wang J, et al. Genetic and transcriptomic analyses of lignin-and lodging-related traits in Brassica napus[J]. Theor Appl Genet, 2017, 130(9):1961-1973.

    [23]

    Hu Z, Zhang GF, Muhammad A, Samad RA, Wang YM, et al. Genetic loci simulta neously controlling lignin monomers and biomass digestibility of rice straw[J]. Sci Rep, 2018, 8(1):3636-3646.

    [24]

    Li FC, Xie GS, Huang JF, Zhang R, Li Y, et al. OsCESA 9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J]. Plant Biotechnol J, 2017, 15(9):1093-1104.

    [25]

    Liu WG, Deng YC, Hussain S, Zou JL, Yuan J, et al. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean (Glycine max(L.) Merr.)[J]. Field Crops Res, 2016, 196:261-267.

    [26]

    Dorairaj D, Ismail MR, Sinniah UR, Tan KB. Silicon me-diated improvement in agronomic traits, physiological parameters and fiber content in Oryza sativa[J]. Acta Physiol Plant, 2020, 42(3):38-49.

    [27]

    Liu SQ, Song FB, Liu FL, Zhu XC, Xu HB. Effect of plan-ting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea maysL.)[J]. J Agric Sci, 2012, 4(12):182-189.

    [28]

    Bian DH, Jia GP, Cai LJ, Ma ZY, Eneji AE, Cui Y. Effects of tillage practices on root characteristics and root lodging resistance of maize[J]. Field Crops Res, 2016, 185:89-96.

    [29]

    Yang G, Zhang HJ, Song SH, Wang HB, Ao X, Xie FT. Comparison on some root related traits of super-high-yielding soybean[J]. Soybean Sci, 2013, 32(2):176-181.

    [30]

    Mizuno H, Kasuga S, Kawahigashi H. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum[J]. BMC Plant Biol, 2018, 18(1):1-12.

    [31]

    Dorairaj D, Ismail MR, Sinniah UR, Kar Ban T. Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia[J]. J Plant Nutr, 2017, 40(8):1111-1124.

    [32]

    Fedenko JR, Erickson JE, Singh MP. Root lodging affects biomass yield and carbohydrate composition in sweet sorghum[J]. Ind Crops Prod, 2015, 74:933-938.

    [33]

    Xue J, Qi BQ, Ma BY, Li BX, Gou L. Effect of altered leaf angle on maize stalk lodging resistance[J]. Crop Sci, 2020:1-15.

    [34]

    Li HC, Wang LJ, Liu MS, Dong ZB, Li QF, et al. Maize plant architecture is regulated by the ethylene biosynthetic geneZmACS7 [J]. Plant Physiol, 2020, 183(3):1184-1199.

    [35]

    Yadav S, Singh UM, Naik SM, Venkateshwarlu C, Ramayya PJ, et al. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice (Oryza sativa L.)[J]. Front Plant Sci, 2017, 8:1431.

    [36] 宋松泉, 刘军, 黄荟, 伍贤进, 徐恒恒, 等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制[J]. 中国科学:生命科学, 2020, 50(6):599-615.

    Song SQ, Liu J, Huang H, Wu XJ, Xu HH, et al. Gibbe-rellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy[J]. Scientia Sinica Vitae, 2020, 50(6):599-615.

    [37]

    Xu H, Liu Q, Yao T, Fu XD. Shedding light on integrative GA signaling[J]. Curr Opin Plant Biol, 2014, 21:89-95.

    [38]

    Daviere JM, Achard P. A pivotal role of DELLAs in regulating multiple hormone signals[J]. Mol Plant, 2015, 9(1):10-20.

    [39]

    Li AX, Yang WL, Guo XL, Liu DC, Sun JZ, Zhang AM. Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker[J]. Mol Breeding, 2012, 30(3):1443-1451.

    [40]

    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, et al. Green revolution:a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882):701-702.

    [41]

    Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops[J]. Science, 2019, 366(6466):eaax0025.

    [42]

    Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol, 2011, 157(4):1820-1831.

    [43]

    Li S, Tian YH, Wu K, Ye YF, Yu JP, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720):595-600.

    [44]

    Shen QW, Zhan XQ, Yang P, Li J, Chen J, et al. Dual activities of plant cGMP-Dependent protein kinase and its roles in gibberellin signaling and salt stress[J]. Plant Cell, 2019, 31(12):3073-3091.

    [45]

    Nemoto K, Ramadan A, Arimura GI, Imai K, Tomii K, et al. Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 de gradation[J]. Nat Commun, 2017, 8(1):1004.

    [46]

    Ookawa T, Hobo T, Yano M, Murata K, Ando T, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nat Commun, 2010, 1(8):132.

    [47]

    Liu C, Zheng S, Gui JS, Fu CJ, Yu HS, et al. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice[J]. Mol Plant, 2018, 11(2):288-299.

    [48]

    Chen LG, Xiang SY, Chen YL, Li DB, Yu DQ. Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence[J]. Mol Plant, 2017, 10(9):1174-1189.

    [49]

    Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480):406-410.

    [50]

    Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480):401-405.

    [51]

    Guo SY, Xu YY, Liu HH, Mao ZW, Zhang C, et al. The interaction between OsMA-DS57 and OsTB1 modulates rice tillering viaDWARF14 [J]. Nat Commun, 2013, 4:1566.

    [52]

    Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, et al.FINE CULM1(FC1)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant Cell Physiol, 2010, 51(7):1127-1135.

    [53]

    Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, et al. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism[J]. Mol Plant, 2015, 8(2):303-314.

    [54]

    Song XG, Lu ZF, Yu H, Shao GN, Xiong JS, et al.IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell Res, 2017, 27(9):1128-11141.

    [55]

    Wang L, Wang B, Yu H, Guo HY, Lin T, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis[J]. Nature, 2020, 583(7815):277-281.

    [56]

    Tang JY, Chu CC. Strigolactone signaling:repressor proteins are transcription factors[J]. Trends Plant Sci, 2020, 25(10):960-963.

    [57]

    Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium[J]. Nature, 2019, 565(7740):485-489.

    [58]

    Chen H, Ma B, Zhou Y, He SJ, Tang SY, et al. E3 ubi-quitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein[J]. Proc Natl Acad Sci USA, 2018, 115(17):4513-4518.

    [59]

    Mao CJ, He JM, Liu LN, Deng QM, Yao XF, et al.OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnol J, 2019, 18(2):429-442.

    [60]

    Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding[J]. Science, 2018, 361(6398):181-186.

    [61]

    Gao J, Chen H, Yang HF, He Y, Tian ZH, Li JX. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development[J]. New Phytol, 2018, 220(2):488-501.

计量
  • 文章访问数:  1016
  • HTML全文浏览量:  26
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2020-08-23
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-02-27

目录

    /

    返回文章
    返回