高级检索+

月季花瓣数量遗传分析

姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂

姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂. 月季花瓣数量遗传分析[J]. 植物科学学报, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142
引用本文: 姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂. 月季花瓣数量遗传分析[J]. 植物科学学报, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142
Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142
Citation: Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. DOI: 10.11913/PSJ.2095-0837.2021.20142
姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂. 月季花瓣数量遗传分析[J]. 植物科学学报, 2021, 39(2): 142-151. CSTR: 32231.14.PSJ.2095-0837.2021.20142
引用本文: 姜珊, 易星湾, 徐庭亮, 杨艺, 于超, 罗乐, 程堂仁, 王佳, 张启翔, 潘会堂. 月季花瓣数量遗传分析[J]. 植物科学学报, 2021, 39(2): 142-151. CSTR: 32231.14.PSJ.2095-0837.2021.20142
Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. CSTR: 32231.14.PSJ.2095-0837.2021.20142
Citation: Jiang Shan, Yi Xing-Wan, Xu Ting-Liang, Yang Yi, Yu Chao, Luo Le, Cheng Tang-Ren, Wang Jia, Zhang Qi-Xiang, Pan Hui-Tang. Genetic analysis of petal number in Rosa[J]. Plant Science Journal, 2021, 39(2): 142-151. CSTR: 32231.14.PSJ.2095-0837.2021.20142

月季花瓣数量遗传分析

基金项目: 

北京市科技计划(Z181100002418006);国家重点研发计划(2019YFD1001001)。

详细信息
    作者简介:

    姜珊(1995-),女,硕士研究生,研究方向为花卉种质创新与育种(E-mail:564102956@qq.com)。

    通讯作者:

    潘会堂,E-mail:htpan@bjfu.edu.cn

  • 中图分类号: S685.12

Genetic analysis of petal number in Rosa

Funds: 

This work was supported by grants from the Beijing Municipal Science and Technology Project (Z181100002418006) and National Key Research and Development Project (2019YFD1001001).

  • 摘要: 以‘窄叶藤本月季花’(Rosa chinensis ‘Zhaiye Tengben Yuejihua’)ב月月粉’(R.chinensis ‘Old Blush’)杂交群体为材料,分析其花瓣数量的分离特点,对单瓣花与重瓣花的花芽分化过程进行观察,并对花瓣、雄蕊及瓣化雄蕊进行表皮细胞超微结构的观察。结果显示:杂交群体的花瓣数量分离明显,出现从5~54片的连续变异;花瓣数量、瓣化雄蕊数量、雌蕊数量的遗传模型为2MG-AD(2对加性-显性-上位性主基因控制),雄蕊数量的遗传模型为0MG(无主基因控制);月季重瓣花形成的原因为雄蕊瓣化,重瓣花形成的关键时期为雄蕊原基形成后期,可见到雄蕊瓣化为花瓣的现象;月季瓣化雄蕊的表皮细胞形态、褶皱程度介于单瓣花花瓣和重瓣花外轮花瓣之间。
    Abstract: The hybrid offspring of Rosa chinensis ‘Zhaiye Tengben Yuejihua’×R. chinensis ‘Old Blush’ were used as materials to elucidate the genetic basis of double-petaled flowers in roses. The segregation characteristics of petal number were analyzed. The anatomical observation of flower bud differentiation process of single flower and double flower were performed and the ultrastructure of epidermal cells in petal, stamen and petalized stamen of single flower and double flower were observed. Results showed that the number of petals in the hybrid population was significantly separated and ranged from five to 54. The genetic model of the number of petals, petalized stamens, and pistils was 2MG-AD (two pairs of additive-dominant-epistatic major gene control) and the genetic model of stamen number was 0MG (no major gene control). Double flowers in roses originated as stamens converting into petals. The key period of double flower formation was the late stage of stamen primordium when the stamens changed into petals. Epidermal cell morphology and fold degree of petalized stamens were between the petals of single flowers and the outer-wheel petals of double flowers.
  • [1]

    François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Sci Rep, 2018, 8(1):12912.

    [2]

    Debener T, Mattiesch L. Construction of a genetic linkage map for roses using RAPD and AFLP markers[J]. Theor Appl Genet, 1999, 99(5):891-899.

    [3]

    Crespel L, Chirollet M, Durel C, Zhang D, Meynet J, Gudin S. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers[J]. Theor Appl Genet, 2002, 105(8):1207-1214.

    [4]

    Zhang L. Genetic linkage map in tetraploid and diploid rose[D]. Clemson:Clemson University, 2003.

    [5]

    Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits[J]. Nat Plants, 2018, 4(7):473-484.

    [6]

    Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, et al. In the name of the rose:a roadmap for rose research in the genome era[J]. Hortic Res-England, 2019, 6(1):65.

    [7]

    Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, et al. Tinkering with the C-function:a molecular frame for the selection of double flowers in cultivated roses[J]. PLoS One, 2010, 5(2):e9288.

    [8] 范天刚, 张钢, 田亚然, 李永红. 低温诱导切花月季过度重瓣化的形态学观察[J]. 东北林业大学学报, 2014(9):116-121.

    Fan TG, Zhang G, Tian YR, Li YH. Morphological observation of excessive petal Rosa hybrida induced by low temperature[J]. Journal of Northeast Forestry University, 2014(9):116-121.

    [9]

    Kim S, Koh J, Yoo MJ, Kong HZ, Hu Y, et al. Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators[J]. Plant J, 2005, 43(5):724-744.

    [10]

    Theißen G. Development of floral organ identity:stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1):75-85.

    [11]

    Theißen G, Saedler H. Floral quartets[J]. Nature, 2001, 409(6819):469-471.

    [12]

    Ma N, Chen W, Fan TG, Tian YR, Zhang S, et al. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida)[J]. BMC Plant Biol, 2015, 15(1):237.

    [13]

    Gattolin S, Cirilli M, Pacheco I,Ciacciulli A. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. Plant J, 2018, 96(2):358-371.

    [14]

    Han Y, Tang AY, Wan HH, Zhang TX, Cheng TR, et al. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to tempe-rature fluctuations[J]. Front Plant Sci, 2018, 9:481.

    [15]

    Rusanov K, Kovacheva N, Rusanova M, Linde M, Debeber T, Atanassov I. Genetic control of flower petal number in Rosa×damascena Mill f. trigintipetala[J]. Biotechnol Biotechnol Equip, 2019, 33(1):597-604.

    [16]

    Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.

    [17] 车代弟, 张晓莹, 张金柱, 杨涛, 张微微, 等. 蔷薇属植物数量性状位点定位的研究进展[J]. 园艺学报, 2016, 43(9):1765-1775.

    Cheng DD, Zhang XY, Zhang JZ, Yang T, Zhang WW, et al. A review of the quantitative trait loci in Rosa[J]. Acta Horticulturae Sinica, 2016, 43(9):1765-1775.

    [18] 王国良. 中国古老月季[M]. 北京:科学出版社, 2015.
    [19]

    Tan JR, Wang J, Luo L, Yu C, Xu TL, et al. Genetic relationships and evolution of old Chinese garden roses based on SSRs and chromosome diversity[J]. Sci Rep, 2017, 7(1):15437.

    [20] 张佐双, 朱秀珍. 中国月季[M]. 北京:中国林业出版社, 2006.
    [21]

    Roberts AV. Encyclopeadia of Rose Science[M]. London:Elsevier, 2003.

    [22]

    Li BL, Wu R. Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites[J]. Can J For Res, 1997, 73(10):3671-3675.

    [23] 马杰, 徐婷婷, 苏江硕, 杨信程, 房伟民, 等. 菊花F1代舌状花耐寒性遗传变异与QTL定位[J]. 园艺学报, 2018, 45(4):717-724.

    Ma J, Xu TT, Su JS, Yang XC, Fang WM, et al. Genetic variation and QTL mapping for cold tolerance of ray florets in an F1 population of Chrysanthemum morifolium[J]. Acta Horticulturae Sinica, 2018, 45(4):717-724.

    [24] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系[M]. 北京:科学出版社, 2003.
    [25] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6.

    Cao XW, Liu B, Zhang YM. SEA:a software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University, 2013, 36(6):1-6.

    [26] 郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006.
    [27] 周利君, 于超, 常笑, 万会花, 罗乐, 等. 月季F1代群体表型性状变异分析[J]. 植物研究, 2019, 39(1):133-140.

    Zhou LJ, Yu C, Chang X, Wan HH, Luo L, et al. Variation analysis of phenotypic traits in F1 population of Rosa spp.[J]. Plant Research, 2019, 39(1):133-140.

    [28] 周长军. 大豆有性杂交F2代产量性状的遗传力分析与遗传相关研究[J]. 黑龙江农业科学, 2006(6):14-16.

    Zhou CJ. Heritability analysis and genetic correlation of yield traits of sexual hybridization F2 generation in soybean[J]. Heilongjiang Agricultural Science, 2006(6):14-16.

    [29] 张中伟, 杨海龙, 付俊, 谢文锦, 丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019(5):37-40.

    Zhang ZW, Yang HL, Fu J, Xie WJ, Feng G. Genetic analysis of main gene + polygene of maize kernel long character[J]. Crops, 2019(5):37-40.

    [30] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3):365-384.

    Xie SF, Ji WQ, Zhang YY, Zhang JJ, Hu WG, et al. Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat[J]. Journal of Crops, 2020, 46(3):365-384.

    [31]

    Debener T, Malek BV, Mattiesch L, Kaufmann H. Genetic and molecular analysis of important characters in roses[J]. Acta Hortic, 2001(547):45-49.

    [32]

    Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genet Genomes, 2008, 4(1):11-23.

    [33] 黄秀, 田代科, 张微微, 曾宋君, 莫海波. 荷花"重瓣化"的花器官形态发育比较观察[J]. 植物分类与资源学报, 2014, 36(3):303-309.

    Huang X, Tian DK, Zhang WW, Zeng SJ, Mo HB. Comparison of floral organ morphological development between single and double flowers in Nelumbo nucifera[J]. Plant Classification and Resources, 2014, 36(3):303-309.

    [34]

    Zhang JJ, Zhu W. Comprehensive application of different methods of observation provides new insight into flower bud differentiation of double-flowered Paeonia lactiflora ‘Dafugui’[J]. HortScience, 2019, 54(1):28-37.

    [35] 罗敏蓉. 蓝堇草属(毛茛科)花形态发生的扫描电子显微镜观察[J]. 广西植物, 2020, 40(11):1645-1652.

    Luo MR. Floral organogenesis in Leptopyrum (Ranunculaceae) with scanning electron microscopy[J]. Guangxi Plants, 2020, 40(11):1645-1652.

    [36] 张丹丹, 王莹, 荀志丽, 李丽红, 陆海, 刘頔. 单、重瓣玉簪花器官分化和花形态学比较研究[J]. 电子显微学报, 2014, 33(3):271-277.

    Zhang DD, Wang Y, Xun ZL, Li LH, Lu H, Liu D. Comparative study on organ differentiation and flower morpho-logy of single and double Hosta[J]. Journal of Electron Microscopy, 2014, 33(3):271-277.

  • 期刊类型引用(6)

    1. 江林琪,赵佳莹,郑飞雄,姚馨怡,李效贤,俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析. 生物技术通报. 2024(03): 229-241 . 百度学术
    2. 陈盈盈,吴丁洁,刘源,张航,刘艳娇,王晶宇,李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展. 生物技术通报. 2024(04): 12-22 . 百度学术
    3. 任家玄,李艳梅,马维峰,吴宙,毛娟. 苹果14-3-3基因家族的鉴定与MdGRF13的功能分析. 果树学报. 2023(03): 405-421 . 百度学术
    4. 时兴伟,陈叶,李玉兰,袁哲明,董玉梅,李兰芝. 苦荞14-3-3基因家族生物信息学分析. 分子植物育种. 2021(05): 1473-1483 . 百度学术
    5. 易丹,王博,段慧荣,李毅,王丽蓉. 白刺14-3-3基因家族的鉴定及表达分析. 草地学报. 2021(03): 443-456 . 百度学术
    6. 邹禹,刘园园,钱宝云,占新春,郑乐娅,张炜,张培江. 水稻高盐胁迫下的酵母双杂交文库构建及OsRPK1胞内互作蛋白质的筛选. 江苏农业学报. 2019(04): 753-763 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  774
  • HTML全文浏览量:  54
  • PDF下载量:  504
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-08-23
  • 修回日期:  2020-11-05
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-04-27

目录

    /

    返回文章
    返回