高级检索+

基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析

李雪丽, 耿甜甜, 汪颖, 钱婷, 张玉洁, 赵凡, 孙坤, 张辉

李雪丽, 耿甜甜, 汪颖, 钱婷, 张玉洁, 赵凡, 孙坤, 张辉. 基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析[J]. 植物科学学报, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172
引用本文: 李雪丽, 耿甜甜, 汪颖, 钱婷, 张玉洁, 赵凡, 孙坤, 张辉. 基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析[J]. 植物科学学报, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172
Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172
Citation: Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. DOI: 10.11913/PSJ.2095-0837.2021.20172
李雪丽, 耿甜甜, 汪颖, 钱婷, 张玉洁, 赵凡, 孙坤, 张辉. 基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析[J]. 植物科学学报, 2021, 39(2): 172-182. CSTR: 32231.14.PSJ.2095-0837.2021.20172
引用本文: 李雪丽, 耿甜甜, 汪颖, 钱婷, 张玉洁, 赵凡, 孙坤, 张辉. 基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析[J]. 植物科学学报, 2021, 39(2): 172-182. CSTR: 32231.14.PSJ.2095-0837.2021.20172
Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. CSTR: 32231.14.PSJ.2095-0837.2021.20172
Citation: Li Xue-Li, Geng Tian-Tian, Wang Ying, Qian Ting, Zhang Yu-Jie, Zhao Fan, Sun Kun, Zhang Hui. Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq[J]. Plant Science Journal, 2021, 39(2): 172-182. CSTR: 32231.14.PSJ.2095-0837.2021.20172

基于RNA-seq技术对乌头属铁棒锤中自交不亲和S基因的挖掘与分析

基金项目: 

中国科学科院遗传发育研究所染色体工程国家重点实验室开放基金项目(PCCE-KF-2019-06);国家自然科学基金项目(31660060,31060033)。

详细信息
    作者简介:

    李雪丽(1995-),女,硕士研究生,研究方向为系统与进化植物学(E-mail:18809405165@163.com)。

    通讯作者:

    张辉,E-mail:zhanghui@nwnu.edu.cn

  • 中图分类号: Q943.2

Mining and analysis of the self-incompatibility S gene in Aconitum pendulum N. Busch based on RNA-seq

Funds: 

This work was supported by grants from the Open Fund Project of the State Key Laboratory of Chromosome Engineering, Institute of Genetic Development, Chinese Academy of Sciences (PCCE-KF-2019-06) and National Natural Science Foundation of China (31660060, 31060033)

  • 摘要: 以毛茛科乌头属铁棒锤(Aconitum pendulum N.Busch)2个品系‘蓝花铁棒锤’(‘WSYB1’)和‘黄花铁棒锤’(‘WSYY1’)为材料,对其进行转录组测序(RNA-seq),采用生物信息学方法鉴定其中可能存在的花柱S基因(self-incompatibility gene)和花粉S基因,并对它们的序列特征进行分析。结果显示,转录组中共鉴定出2个在雌蕊中特异或高表达的花柱S基因(ApSRNase)和2个在雄蕊中特异表达的花粉S基因(ApSLF)。与耧斗菜(Aquilegia coerulea James)相似,铁棒锤中也存在S-RNaseS locus ribonucleases)和SLFS locus F-box)控制的S-RNase类的自交不亲和系统,而不存在sS(stigma S-determinant)和pS(pollen S-determinant)控制的罂粟科类型的自交不亲和系统。
    Abstract: Two Aconitum pendulum N. Busch cultivars (‘WSYB1’ and ‘WSYY1’) were used as materials for transcriptome sequencing (RNA-seq) using bioinformatics to identify possible style and pollen S genes and analyze their sequence characteristics. Results identified two style S genes (ApSRNase) specifically or highly expressed in the style and two pollen S genes (ApSLF) specifically expressed in pollen. Similar to the sequenced plant Aquilegia coerulea James, this study showed that there was a S-RNase-based self-incompatibility system controlled by S-RNase and SLF in A. pendulum, but no Papaveraceae-type self-incompatibility system controlled by sS and pS.
  • [1]

    Takayama S, Isogai A. Self-Incompatibility in plants[J]. Annu Rev of Plant Biol, 2005, 56(1):467-489.

    [2]

    Lewis D. Incompatibility in plants[J]. J Cell Biochem, 2006, 99(2):373-81.

    [3] 姜立杰, 曹家树. 芸薹属植物自交不亲和性的分子机制[J]. 植物学通报, 2001, 18(4):411-417.

    Jiang LJ, Cao JS. The molecular mechanism of self-incompatibility in Brassica[J]. Chinese Bulletin of Botany, 2001, 18(4):411-417.

    [4] 刘素玲, 赵国建, 吴欣, 张百行, 高岭巍, 等. 植物自交不亲和机制研究进展[J]. 中国农业科技导报, 2016, 18(4):31-37.

    Liu SL, Zhao GJ, Wu X, Zhang BH, Gao LW, et al. Research progress on plant self-incompatibility mechanism[J]. Journal of Agricultural Science and Technology, 2016, 18(4):31-37.

    [5]

    Lawrence MJ, Afzal M, Kenrick J. The genetical control of self-incompatibility in Papaver rhoeas[J]. Heredity, 1978, 40(2):239-253.

    [6]

    Igic B, Kohn JR. Evolutionary relationships among self-incompatibility RNases[J]. Proc Natl Acad Sci USA, 2001, 98(23):13167-13171.

    [7] 张一婧, 薛勇彪. 基于S-核酸酶的自交不亲和性的分子机制[J]. 植物学通报, 2007, 24(3):372-388.

    Zhang YJ, Xue YB. Molecular mechanism of self-incompatibility based on S-RNase[J]. Chinese Bulletin of Botany, 2007(3):372-388.

    [8]

    Xue YB, Carpenter R, Dickinson HG, Coen ES. Origin of allelic diversity in Antirrhinum S locus RNases[J]. Plant Cell, 1996, 8(5):805-814.

    [9]

    Kao T, Tsukamoto T. The molecular and genetic bases of S-RNase-based self-incompatibility[J]. Plant Cell, 2004, 16(s1):S72-S83.

    [10]

    Lai Z, Ma WS, Han B, Liang LZ, Zhang YS, et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum[J]. Plant Mol Biol, 2002, 50(1):29-42.

    [11] 张辉. 金鱼草自交不亲和S-位点的结构与进化[D]. 北京:中国科学院大学, 2014.
    [12]

    Zhang Y, Zhang H, Zhao F, Song ZD, Guo YZ, et al. A molecular evolutionary framework of self-Incompatibility in the angiosperms[J]. SSRN Electronic Journal, 2020.DOI: 10.2139/ssrn.3596584.

    [13]

    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.

    [14]

    Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3):R25.

    [15]

    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323-323.

    [16]

    Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, et al. Identification of the pollen self-incompatibility determinant in Papaver rhoeas[J]. Nature, 2009, 459(7249):992-995.

    [17]

    Foote HC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, et al. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L.[J]. Proc Natl Acad Sci USA, 1994, 91(6):2265-2269.

    [18]

    Walker EA, Ride JP, Kurup S, Franklin-Tong VE, Lawrence MJ, Franklin FCH. Molecular analysis of two functional homologues of the S3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations[J]. Plant Mol Biol, 1996, 30(5):983-994.

    [19]

    Kurup S, Ride JP, Jordan N, Fletcher G, Franklin-Tong VE, et al. Identification and cloning of related self-incompatibility S-genes in Papaver rhoeas and Papaver nudicaule[J]. Sex Plant Reprod, 1998, 11(4):192-198.

    [20]

    Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR, et al. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility[J]. PLoS One, 2011, 6(8):e23635.

    [21]

    Zhang JH, Madden TL. PowerBLAST:a new network BLAST application for interactive or automated sequence analysis and annotation[J]. Genome Res, 1997, 7(6):649-656.

    [22] 许克恒, 张云彤, 张莹, 王彬, 王法微, 李海燕. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1):26-32.

    Xu KH, Zhang YT, Zhang Y, Wang B, Wang FW, Li HY. Research advances on the F-box gene family in plants[J]. Biotechnology Bulletin, 2018, 34(1):26-32.

    [23]

    Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation[J]. PLoS Comput Biol, 2008, 4(5):e1000069.

    [24]

    Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.

    [25]

    Kumar S, Stecher G, Tamura K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mo Biol Evol, 2016, 33(7):1870-1874.

    [26]

    Stamatakis A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.

    [27] 陈娜娜, 刘金义, 蔡斌, 王刚, 王敏, 程宗明. 苹果SnRK2基因家族的鉴定和生物信息学分析[J]. 中国农学通报, 2013, 29(13):120-127.

    Chen NN, Liu JY, Cai B, Wang G, Wang M, Cheng ZM. Identification and bioinformatics analysis of theSnRK2 gene family in apple (Malus×domestica Borkh.)[J]. Chinese Agricultural Science Bulletin, 2013(13):120-127.

    [28] Meinken J, Asch DK, Neizer-Ashun KA, Chang GH, Cooper JR CR, Xiang JM. FunSecKB2:真菌蛋白亚细胞定位的知识库[J]. 计算分子生物学, 2015, 4(10):1-11.

    Meinken J, Asch DK, Neizer-Ashun KA, Chang GH, Cooper JR CR, Xiang JM. FunSecKB2:a fungal protein subcellular location knowledgebase[J]. Computational Molecular Biology, 2015, 4(10):1-11.

    [29] 王月志, 戴美松, 蔡丹英, 施泽彬. 基于高通量测序的梨果实常用内参基因表达稳定性分析[J]. 分子植物育种, 2019, 17(3):746-753.

    Wang YZ, Dai MS, Cai DY, Shi ZB. Expression stability analysis of common internal reference genes in pear fruit based on high-throughput sequencing[J]. Molecular Plant Breeding, 2019, 17(3):746-753.

    [30]

    Aguiar B, Vieira J, Cunha AE, Vieira CP. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes[J]. BMC Plant Biol, 2015, 15(1):129.

    [31] 余镇藩, 马鑫鑫, 曾斌, 王建友, 阿布都卡尤木·阿依麦提. 植物配子体自交不亲和SBP1基因研究进展[J]. 分子植物育种, 2019, 17(16):5285-5290.

    Yu ZF, Ma XX, Zeng B, Wang JY, Abdkym·Aymt. Research progress onSBP1 gene of plant gametophytic self-incompatibility[J]. Molecular Plant Breeding, 2019, 17(16):5285-5290.

    [32]

    Kubo KI, Entani T, Takara A, Wang N, Fields AM, et al. Collaborative non-self recognition system in S-RNase-based self-Incompatibility[J]. Science, 2010, 330(6005):796-799.

    [33]

    Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, et al. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana[J]. Nature, 2006, 439(7078):805-810.

    [34] 李富婷, 唐飞, 高冬丽, 段思凡, 李云海, 等. 配子体型自交不亲和调控机制的研究进展[J]. 云南师范大学学报(自然科学版), 2019, 39(6):65-70.

    Li FT, Tang F, Gao DL, Duan SF, Li YH, et al. Research progress on the regulation mechanism of gametophytic self-incompatibility[J]. Journal of Yunnan Normal University (Natural Science Edition), 2019, 39(6):65-70.

    [35]

    Newbigin E, Paape T, Kohn JR. RNase-based self-Incompatibility:puzzled by pollen S[J]. Plant Cell, 2008, 20(9):2286-2292.

  • 期刊类型引用(4)

    1. 李必聪,李慧英,肖遥,罗莎,周庆红,黄英金,朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析. 浙江农业学报. 2023(07): 1604-1616 . 百度学术
    2. 赵晓宇,苏二虎,王雪娇,刘坤雨,高圆丽,薛春雷,梁红伟,李强. 缺硼对大豆幼苗生长及保护性酶活的影响. 大豆科学. 2023(06): 718-725 . 百度学术
    3. 罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民. 巨桉扩展蛋白EgrEXPA8和EgrEXPA10基因的克隆和表达特性分析. 热带亚热带植物学报. 2023(06): 827-834 . 百度学术
    4. 侯佳玉,闫磊,程锦,曾紫君,张雅茹,鲁克嵩,姜存仓. L-天冬氨酸纳米钙促进油菜生长的机理机制. 农业环境科学学报. 2022(07): 1408-1416 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  483
  • HTML全文浏览量:  2
  • PDF下载量:  530
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-11-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-04-27

目录

    /

    返回文章
    返回