Relationships between meteorological factors and Populus euphratica Oliv. sap flow at different time scales in the southeast of Kumtag Desert
-
摘要: 通过对库姆塔格沙漠东南部胡杨(Populus euphratica Oliv.)液流速率及气象因子(太阳总辐射、风速、空气相对湿度、空气温度、饱和水汽压差)持续5个月的同步观测,揭示气象因子在不同时间尺度对胡杨液流的影响。结果显示:在月尺度下,太阳总辐射是液流速率变化的主要影响因子,单独能解释98.3%的液流速率变化;在日尺度下,空气温度、空气相对湿度、风速、太阳总辐射对液流速率变化影响最大,空气温度可以解释液流速率变化的33.0%,4个因子共同可以解释55.2%的液流速率变化;在小时尺度下,对2018年5-9月液流速率的影响最大的是太阳总辐射。随着时间尺度的扩大,对液流速率变化的影响因子由多变少。根据气象因子预测小时尺度胡杨液流速率需要较多的参数且可靠性最小,预测月尺度液流速率需要较少的参数且可靠性最大,预测月尺度胡杨液流速率更为合适。Abstract: Populus euphratica Oliv. sap flow and meteorological factors (i.e., total solar radiation, wind speed, air temperature, air humidity, and vapor pressure deficit) were observed synchronously for five months to reveal the impact of such factors on sap flow at different time scales. Results showed that on the monthly scale, total solar radiation was the main factor influencing sap flow of P. euphratica, explaining 98.3% of sap flow changes. On the daily scale, air temperature, air humidity, wind speed, and total solar radiation had the greatest influence on changes in the sap flow rate, with air temperature explaining 33.0% of sap flow changes, and all four factors explaining 55.2% of sap flow changes. On the hourly scale, total solar radiation had the greatest impact on sap flow in May to September 2018. With the increase in time scale, fewer factors affected the flow rate change. Predicting P. euphratica sap flow on an hourly scale based on meteorological factors required more parameters and showed the least reliability. Predicting the monthly sap flow rate required fewer parameters and showed the maximum reliability. Thus, predicting the sap flow rate of P. euphratica would be more appropriate at the monthly scale.
-
Keywords:
- Populus euphratica /
- Sap flow /
- Kumtag Desert /
- Meteorological factors
-
-
[1] 聂玉鸿, 宗旭祥, 何长福. 困难立地条件下胡杨造林技术及效果分析[J]. 现代农业科技, 2016(2):184-185. Nie YH, Zong XX, He CF. Populus euphratica afforestation technology and effect analysis under difficult site conditions[J]. Modern Agricultural Technology, 2016(2):184-185.
[2] Byrne KM, Lauenroth WK, Adler PB. Contrasting effects of precipitation manipulations on production in two sites within the central grassland region, USA[J]. Ecosystems, 2013, 16(6):1039-1051.
[3] Tang Y, Wu X, Chen Y. Sap flow characteristics and physiological adjustments of two dominant tree species in pure and mixed plantations in the semi-arid Loess Plateau of China[J]. J Arid Land, 2018, 10(6):833-849.
[4] Guo QQ, Zhang WH. Sap flow of Abies georgei var. smithii and its relationship with the environment factors in the Tibetan subalpine region, China[J]. J Mt Sci, 2015, 12(6):1373-1382.
[5] Steppe K, Vandegehuchte MW, Tognetti R. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiol, 2015, 35(4):341-345.
[6] Granier A. Sap flow measurements in Douglas-fir tree trunks by means of a new thermal method[J]. Ann Sci Forest, 1987, 44(1):1-14.
[7] Smite DM, Allen SJ. Measurement of sap flow in plant stems[J]. J Exp Bot, 1996, 47(12):1833-1844.
[8] Lu P, Urban L, Zhao P. Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees:theory and practice[J]. Acta Bota Sin, 2004, 46(6):631-646.
[9] 任启文, 张岩, 李联地, 尤海舟, 毕君. 不同时间尺度下落叶松液流速率与森林小气候的关系[J]. 中南林业科技大学学报, 2018, 38(12):30-37. Ren QW, Zhang Y, Li LD, You HZ, Bi J. Relationship between sap flow velocity of Larix principis-rupprechtii and forest microclimate in different time scales[J]. Journal of Central South University of Forestry & Technology, 2018, 38(12):30-37.
[10] 徐先英, 孙保平, 丁国栋,郭树江, 柴成武. 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J]. 生态学报, 2007, 28(3):895-905. Xu XY, Sun BP, Ding GD, Guo SJ, Chai CW. Sap flow patterns of three main sand-fixing shrubs and their responses to environmental factors in desert areas[J]. Acta Ecologica Sinica, 2007, 28(3):895-905.
[11] 郝少荣, 裴志永, 段广东, 乔敬伟, 庞国辉, 等.不同时间尺度下环境因子与沙柳茎流关系的差异研究[J]. 干旱区资源与环境, 2020, 34(3):152-158. Hao SR, Pei ZY, Duang GD, Qiao JW, Pang GH, et al. Relationships between environmental factors and Salix psammophila's sap flow at different time scales[J]. Journal of Arid Land Resources and Environment, 2020, 34(3):152-158.
[12] 姚依强, 陈珂, 王彦辉, 王艳兵, 李振华, 等.华北落叶松树干液流速率主要影响因子及关系的时间尺度变化[J]. 干旱区资源与环境, 2017, 31(2):155-161. Yao YQ, Chen K, Wang YH, Wang YB, Li ZH, et al. Relationships between sap flow velocity of Larix principis-rupprechtii and environmental factors and their variation with time scales[J]. Journal of Arid Land Resources and Environment, 2017, 31(2):155-161.
[13] 赵天宇, 关东海, 苏里坦,时山良. 环境因子对胡杨树干液流动态的影响[J].水土保持通报, 2015, 35(6):15-20. Zhao TY, Guan DH, Su LT, Shi SL. Effects of environmental factors on trunk sap flow of Populus euphratica[J]. Bulletin of Soil and Water Conservation, 2015, 35(6):15-20.
[14] 周孝明, 陈亚宁, 李卫红, 何斌, 郝兴明. 塔里木河下游胡杨树干液流特征研究[J]. 中国沙漠, 2008(4):673-678. Zhou XM, Chen YN, Li WH, He B, Hao XM. Study of sap flow in stem of Populus euphratica in lower reaches of Tarim River[J]. Journal of Desert Research, 2008(4):673-678.
[15] 白云岗, 宋郁东, 周宏飞, 张江辉. 热脉冲法对胡杨树干液流的监测与蒸腾过程模拟[J]. 水土保持学报, 2007(3):188-192. Bai YG, Song YD, Zhou HF, Zhang JH. Measuring stem sap flow and simulating transpiration of Populus euphrtaicr by heat pulse technique[J]. Journal of Soil and Water Conservation, 2007(3):188-192.
[16] 李炜, 司建华, 冯起, 鱼腾飞. 胡杨(Populus euphratica)蒸腾耗水对水汽压差的响应[J]. 中国沙漠, 2013, 33(5):1377-1384. Li W, Si JH, Feng Q, Yu TF. Response of transpiration to water vapour pressure defferrential of Populus euphratica[J]. Journal of Desert Research, 2013, 33(5):1377-1384.
[17] 沈幸, 吕朝燕, 柴仲平, 张希明. 塔里木河下游阿拉干地区胡杨树干液流特征[J]. 新疆农业大学学报, 2015, 38(2):114-119. Shen X, Lü CY, Chai ZP, Zhang XM. Characteristics of stem sap flow of Populus euphratica of Alagan area in the lower reaches of Tarim River[J]. Journal of Xinjiang Agricultural University, 2015, 38(2):114-119.
[18] 赵春彦, 司建华, 鱼腾飞, 李炜. 胡杨树干液流进程与太阳辐射的关系[J]. 干旱区资源与环境, 2015, 29(5):99-104. Zhao CY, Si JH, Yu TF, Li W. Relationship between process of xylem sap flow of Populus euphratica and solar radiation[J]. Journal of Arid Land Resources and Environment, 2015, 29(5):99-104.
[19] 买尔当·克依木, 玉米提·哈力克, 古丽比亚·乌买尔, 阿不都艾尼·阿不里. 胡杨树干液流日变化及其与气象因素的相关关系[J]. 冰川冻土, 2018, 40(1):166-175. Maierdang Keyimu, Müt Halik, Gulibiya Wumaier, Abdugheni Abliz. Diurnal variation of Populus euphratica sap flow and its correlation with meteorological factors[J]. Journal of Glaciology and Geocryology, 2018, 40(1):166-175.
[20] 朱亚, 吕光辉, 胡颖颖, 杨晓东, 冉启阳. 艾比湖自然保护区胡杨树干液流特征研究[J]. 干旱区资源与环境, 2013, 27(11):69-73. Zhu Y, Lü GH, Hu YY, Yang HD, Ran QY. The experimental study of Populus euphratica sap flow characteristics in the Ebinur lake basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(11):69-73.
[21] 司建华, 冯起, 张小由, 常宗强, 席海洋, 张凯. 极端干旱区荒漠河岸林胡杨生长季树干液流变化[J]. 中国沙漠, 2007, 27(3):442-447. Si JH, Feng Q, Zhang XY, Chang ZQ, Xi HY, Zhang K. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. Journal of Desert Research, 2007, 27(3):442-447.
[22] 陈新均, 王学全, 卢琦, 杨文斌, 张立恒, 李永华. 季节性河道土壤水分及其渗漏特征初探[J]. 干旱区研究, 2020, 37(1):97-104. Chen XJ, Wang XQ, Lu Q, Yang WB, Zhang LH, Li YH. Soil moisture content and soil water infiltration in seasonal watercourse in arid area[J]. Arid Zone Research, 2020, 37(1):97-104.
[23] 黄雅茹, 辛智鸣, 罗红梅, 罗凤敏, 马迎宾, 等. 乌兰布和沙漠中国沙棘果实成熟期茎干液流规律及其与环境因子的关系[J].生态学杂志, 2015, 34(11):3125-3131. Huang YR, Xin ZM, Luo HM, Luo FM, Ma YB, et al. Stem sap flow dynamics of Hippophae rhamnoides L. subsp. sinensis Rousi in relation to environmental factors in Ulan Buh Desert during fruit stage[J]. Chinese Journal of Eco-logy, 2015, 34(11):3125-3131.
[24] 张利刚, 曾凡江, 刘镇, 刘波, 安桂香, 袁娜. 极端干旱区3种植物液流特征及其对环境因子的响应[J]. 干旱区研究, 2013, 30(1):115-121. Zhang LG, Zeng FJ, Liu Z, Liu B, An GX, Yuan N. Sap flow characteristics of three plant species and their responses to environmental factors in an extremely arid region[J]. Arid Zone Research, 2013, 30(1):115-121.
[25] 李浩, 胡顺军, 朱海, 李茜倩. 基于热扩散技术的梭梭树干液流特征研究[J].生态学报, 2017, 37(21):7187-7196. Li H, Hu SJ, Zhu H, Li QQ. Characterization of stem sap flow Haloxylon ammodendron by using thermal dissipation technology[J]. Acta Ecologica Sinica, 2017, 37(21):7187-7196.
[26] 何斌, 李卫红, 陈永金, 徐长春, 袁素芬. 干旱胁迫下胡杨茎流日变化分析——以塔里木河下游英苏断面为例[J]. 西北植物学报, 2007, 27(2):315-320. He B, Li WH, Chen YJ, Xu CC, Yuan SF. Variation of sap flow and stem diameter of Populus euphratica under drought stress:a case study along yingsu section[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2):315-320.
[27] 鱼腾飞, 冯起, 司建华, 张小由, 赵春彦. 胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据[J]. 北京林业大学学报, 2017, 39(9):8-16. Yu TF, Feng Q, Si JH, Zhang XY, Zhao CY. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9):8-16.
[28] 赵春彦, 司建华, 冯起, 鱼腾飞, 李炜. 胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J]. 中国沙漠, 2014, 34(3):718-724. Zhao CY, Si JH, Feng Q, Yu TF, Li W. Xylem sap flow of Populus euphratica in relation to environmental factors in the lower reaches of Heihe River[J]. Journal of Desert Research, 2014, 34(3):718-724.
[29] 何斌, 陈亚宁, 李卫红, 周孝明. 塔里木河下游地区胡杨蒸腾耗水规律及其对生态输水的响应[J]. 资源科学, 2009, 31(9):1545-1552. He B, Chen YN, Li WH, Zhou XM. Analysis of the variation of transpiration of Popular euphratica and its response to ecological water supply at the lower reaches of Tarim River[J]. Resources Science, 2009, 31(9):1545-1552.
[30] 徐世琴, 吉喜斌, 金博文. 典型荒漠植物沙拐枣茎干液流密度动态及其对环境因子的响应[J]. 应用生态学报, 2016, 27(2):14-22. Xu SQ, Ji XB, Jin BW. Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables[J]. Chinese Journal of Applied Ecology, 2016, 27(2):14-22.
-
期刊类型引用(2)
1. 古丽米娜·吐尔孙江,陈启民,桑巴叶. 不同林龄胡杨液流特征及耗水量研究. 防护林科技. 2024(06): 61-63 . 百度学术
2. 王子祥,李颜娥,武斌,徐达宇,吴斌. 基于EWT-ARIMA组合模型的银杏液流预测与因子关联分析. 电子技术应用. 2023(10): 89-95 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 412
- HTML全文浏览量: 1
- PDF下载量: 345
- 被引次数: 3