高级检索+

秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应

冯娟, 华亚伟, 张志成, 刘康, 刘波, 张锋

冯娟, 华亚伟, 张志成, 刘康, 刘波, 张锋. 秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应[J]. 植物科学学报, 2021, 39(3): 268-277. DOI: 10.11913/PSJ.2095-0837.2021.30268
引用本文: 冯娟, 华亚伟, 张志成, 刘康, 刘波, 张锋. 秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应[J]. 植物科学学报, 2021, 39(3): 268-277. DOI: 10.11913/PSJ.2095-0837.2021.30268
Feng Juan, Hua Ya-Wei, Zhang Zhi-Cheng, Liu Kang, Liu Bo, Zhang Feng. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen'an[J]. Plant Science Journal, 2021, 39(3): 268-277. DOI: 10.11913/PSJ.2095-0837.2021.30268
Citation: Feng Juan, Hua Ya-Wei, Zhang Zhi-Cheng, Liu Kang, Liu Bo, Zhang Feng. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen'an[J]. Plant Science Journal, 2021, 39(3): 268-277. DOI: 10.11913/PSJ.2095-0837.2021.30268
冯娟, 华亚伟, 张志成, 刘康, 刘波, 张锋. 秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应[J]. 植物科学学报, 2021, 39(3): 268-277. CSTR: 32231.14.PSJ.2095-0837.2021.30268
引用本文: 冯娟, 华亚伟, 张志成, 刘康, 刘波, 张锋. 秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应[J]. 植物科学学报, 2021, 39(3): 268-277. CSTR: 32231.14.PSJ.2095-0837.2021.30268
Feng Juan, Hua Ya-Wei, Zhang Zhi-Cheng, Liu Kang, Liu Bo, Zhang Feng. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen'an[J]. Plant Science Journal, 2021, 39(3): 268-277. CSTR: 32231.14.PSJ.2095-0837.2021.30268
Citation: Feng Juan, Hua Ya-Wei, Zhang Zhi-Cheng, Liu Kang, Liu Bo, Zhang Feng. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen'an[J]. Plant Science Journal, 2021, 39(3): 268-277. CSTR: 32231.14.PSJ.2095-0837.2021.30268

秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应

基金项目: 

国家自然科学基金项目(41601192)。

详细信息
    作者简介:

    冯娟(1994-),女,硕士研究生,研究方向为生态学与生态规划(E-mail:Fengjuan600@163.com)。

    通讯作者:

    刘康,E-mail:liuk63@126.com

  • 中图分类号: Q948

Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen'an

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (41601192)。

  • 摘要: 以陕西镇安木王国家森林公园的油松(Pinus tabuliformis Carr.)为样本,运用响应函数及滑动相关分析等树木年代学方法,研究油松径向生长与气候因子之间的关系及其对气候变化的响应。结果显示:研究区平均气温在1989年发生显著突变,较突变前升高约1.4℃;气温突变后的树轮宽度平均指数1.04,明显大于气温突变前的平均轮宽指数0.87,气温的升高有助于样地油松的生长。相关分析结果表明,油松对温度的需要贯穿于整个生长季,当年3-4月份的温度是对样地油松生长起关键促进作用的因素,而前一年11月份温度的“滞后作用”不可忽略。降水不是该地区油松的主要限制因子,但当年2月份适宜的水分条件有利于树木的生长。气温突变后,滑动相关分析结果显示研究区油松与当年2月份的降水以及当年3-4月份的温度具有稳定的正相关性;树木径向生长与其它月份的气候因子之间的关系有所波动。因此在进行区域气候重建时,应该把树木生长-气候关系随时间变化的波动考虑在内。
    Abstract: Using Pinus tabuliformis Carr. samples obtained in the Muwang National Forest Park in Zhen'an, Shaanxi, we studied the relationship between radial growth of P. tabuliformis and climatic factors using response functions, moving correlation analysis, and other dendrochronological methods. We further explored the response of this relationship to climate change. Results showed that: (1)Based on the Mann-Kendall test, average temperature in the study area exhibited a significant abrupt change in 1989, with temperatures 1.4℃ higher than before the change. (2) Based on statistical analysis of standard chronology, the average tree-ring index (1.04) after the abrupt temperature change was significantly greater than the index (0.87) before the change, indicating that the increase in temperature was beneficial for P. tabuliformis growth. (3) Correlation analysis showed that the temperature demands of P. tabuliformis run throughout the entire growing season. The temperature, especially in March and April, had a positive effect on P. tabuliformis growth. The temperature from the previous November also had an effect on matter accumulation in P. tabuliformis. Precipitation was not the major limiting factor for growth, but moderate precipitation in February had a positive effect on radial growth. (4) Precipitation in February and average temperatures in March and April maintained a stable positive correlation with P. tabuliformis in the study area; the relationship between radial growth of the trees and climatic factors fluctuated in the other months. Based on the above results, fluctuations in the tree growth-climate relationship over time should be considered when carrying out regional climate reconstruction research.
  • [1] 刘可祥, 张同文, 张瑞波, 喻树龙, 黄力平, 等. 不同树高处树轮密度变化特征及其对气候的响应[J]. 应用生态学报, 2021, 32(2):503-512.

    Liu KX, Zhang TW, Zhag RB, Yu SL, Huang LP, et al. Characteristics of tree-ring density at different stem heights and their climatic responses[J]. Chinese Journal of Applied Ecology, 2021, 32(2):503-512.

    [2] 蔡秋芳, 刘禹, 段丙闯. 树轮多指标研究在亚热带古气候重建中的作用——以桂林地区为例[J]. 地球环境学报, 2019, 10(2):141-148.

    Cai QF, Liu Y, Duan BC. Role of tree-ring multiproxy in palaeoclimate reconstruction in subtropical China, taking Guilin as an example[J]. Journal of Earth Environment, 2019, 10(2):141-148.

    [3] 第三次气候变化国家评估报告编写委员会. 第三次气候变化国家评估报告[R]. 北京:科学出版社, 2015:1-976
    [4]

    IPCC. Climate Change 2013:The physical science basis. Contribution of working groupI[WTXFZ] to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press, 2013.

    [5] 张瑞波, 袁玉江, 魏文寿, 勾晓华, 喻树龙, 等. 天山山区树轮气候研究若干进展[J]. 沙漠与绿洲气象, 2016, 10(4):1-9.

    Zhang RB, Yuan YJ, Wei WS, Gou XH, Yu SL, et al. Research advances of dendroclimatology in Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10(4):1-9.

    [6] 杨柳, 李静茹, 彭剑峰, 霍嘉新, 陈亮. 1801年以来河南尧山地区油松记录的4-7月高温变化及影响机制研究[J]. 生态学报, 2021, 41(1):1-14.

    Yang L, Li JR, Peng JF, Huo JX, Chen L. Temperature variation and influence mechanism of Pinus tabulaeformis ring width recorded since 1801 at Yao Mountain, Henan Province[J] Acta Ecologica Sinica, 2021, 41(1):1-14.

    [7] 金敏艳, 李进军, 车宗玺, 王放, 张军周, 勾晓华. 祁连山中部祁连圆柏年内径向生长对气候因子的响应[J]. 生态学报, 2020, 40(21):7699-7708.

    Jin MY, Li JJ, Che ZX, Wang F, Zhang JZ, Gou XH. Intra-annual radial growth response of Qilian juniper (Juniperus przewalskii) to climate factors in the central Qilian Mountains, northwest China[J]. Acta Ecologica Sinica, 2020, 40(21):7699-7708.

    [8]

    Zhang F, Gou XH, Liu WH, Levia DF, Li YJ. Individual and time-varying tree-ring growth to climate sensitivity of Pinus tabuliformis Carr. and Sabina przewalskii Kom. in the eastern Qilian Mountains, China[J]. Trees, 2013, 27:359-370.

    [9] 张艳静, 于瑞得, 郑宏伟, 甘淼, 杨美琳, 石冰冰. 天山东西部雪岭云杉径向生长对气候变暖的响应差异[J]. 生态学杂志, 2017, 36(8):2149-2159.

    Zhang YJ, Yu RD, Zhen HW, Gan M, Yang ML, Shi BB. Difference in response of radial growth of Picea schren-kiana to climate warming in the eastern and western Tianshan Mountains[J]. Chinese Journal of Ecology, 2017, 36(8):2149-2159.

    [10] 张扬, 白红英, 苏凯, 黄晓月, 孟清, 郭少壮. 1960-2013年秦岭陕西段南北坡极端气温变化空间差异[J]. 地理学报, 2018, 73(7):1297-1308.

    Zhang Y, Bai HY, Su K, Huang XY, Meng Q, Guo SZ. Spatial variation of extreme temperature change on sou-thern and northern slopes of Shaanxi section in Qinling Mountains during 1960-2013[J]. Acta Geographica Sinica, 2018, 73(7):1297-1308.

    [11] 吴祥定, 邵雪梅. 中国秦岭地区树木年轮密度对气候响应的初步分析[J]. 应用气象学报, 1994, 5(2):253-256.

    Wu XD, Shao XM, A preliminary analysis on response of tree-ring density to climate in the Qinling Mountains of China[J]. Journal of Applied Meteorological Science, 1994, 5(2):253-256.

    [12]

    Dang HS, Jiang MX, Zhang QF. Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China[J]. Forest Ecology and Management, 2007, 240(1-3):143-150.

    [13] 李书恒, 侯丽, 史阿荣, 陈兰, 朱显亮, 白红英. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应[J]. 生态学报, 2018, 38(20):7435-7446.

    Li SH, Hou L, Shi AR, Chen L, Zhu XL, Bai HY. Response of Larix chinensis forest ecosystem to climate change based on Biome-BGG model and tree rings[J]. Acta Ecologica Sinica, 2018, 38(20):7435-7446.

    [14] 刘洪滨, 邵雪梅. 采用秦岭冷杉年轮宽度重建陕西镇安1755年以来的初春温度[J]. 气象学报, 2000, 58(2):223-233.

    Liu HB, Shao XM. Reconstruction of early-spring temperature at Zhen'an from 1775 using tree-ring chronologies[J]. Acta Meteorologica Sinica, 2000, 58(2):223-233.

    [15] 杨文峰, 李兆元, 吴素良, 董亚非, 吴祥定. 秦岭太白山树木年轮对气候变化的响应分析[J]. 陕西气象, 1993(5):9-11.

    Yang WF, Li ZY, Wu SL, Dong YF, Wu XD. Response of tree-ring width to climate change in Mount Taibai of Qinling Mountains[J]. Shaanxi Meteorology, 1993(5):9-11.

    [16] 康永祥, 刘婧辉, 孙菲菲, 代栓发, 何小军. 太白山高山林线区太白红杉林年轮宽度对气候变化的响应[J]. 东北林业大学学报, 2010, 38(8):12-44.

    Kang YX, Liu JH, Liu FF. Responses of tree ring width of Larix chinensis in the regions of alpine timberline in Taibai Mountain to climate change[J]. Journal of Northeast Forestry University, 2010, 38(8):12-44.

    [17] 秦进, 白红英, 周旗, 王俊, 李书恒, 等. 牛背梁自然保护区林线不同海拔巴山冷杉径向生长对气候变化的响应[J]. 干旱区地理, 2017, 40(1):148-155.

    Qin J, Bai HY, Zhou Q, Wang J, Li SH, et al. Radial growth response of Abies fargesii to climate change from different elevations at timberline of Niubeiliang Natural Reserve[J]. Arid Land Geography, 2017, 40(1):148-155.

    [18] 吴祥定. 树木年轮分析在环境变化研究中的应用[J]. 第四纪研究, 1990(2):188-196.

    Wu XD. Application of tree ring analysis in environmental change research[J]. Quaternary Sciences,1990(2):188-196.

    [19]

    Henrid. GM. Evaluating cross dating accuracy a manual and tutorial for the computer program[J]. Tree-Ring Res, 2001, 57(2):205-221.

    [20] 李双双, 芦佳玉, 延军平, 刘宪锋, 孔锋, 王娟. 1970-2015年秦岭南北气温时空变化及其气候分界意义[J]. 地理学报, 2018, 73(1):13-24.

    Li SS, Lu JY, Yan JP, Liu XF, Kong F, Wang J. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary[J]. Acta Geographica Sinica, 2018, 73(1):13-24.

    [21] 李英杰, 延军平, 刘永林. 秦岭南北气候干湿变化与降水非均匀性的关系[J]. 干旱区研究, 2016, 3(33):619-627.

    Li YJ, Yan JP, Liu YL. Relationship between dryness/wetness and precipitation heterogeneityin the north and south of the Qinling Mountains[J]. Arid Zone Research, 2016, 3(33):619-627.

    [22] 白红英, 马新萍, 高翔, 侯饮磊. 基于DEM的秦岭山地1月气温及0℃等温线变化[J]. 地理学报, 2012, 67(11):1443-1450.

    Bai HY, Ma XP, Gao X, Hou XL. Variations in January temperature and 0℃ isothermal curvein Qinling Mountains based on DEM[J]. Acta Geographica Sinica, 2012, 67(11):1443-1450.

    [23] 延军平, 郑宇. 秦岭南北地区环境变化响应比较研究[J]. 地理研究, 2001, 20(5):576-582.

    Yan JP, Zheng Y. A comparative study on environmental change response over the northern and the southern regions of the Qinling Mountains[J]. Geographical Research, 2001, 20(5):576-582.

    [24] 齐贵增, 白红英, 孟清, 赵婷, 郭少壮. 1959-2018年秦岭南北春季气候时空变化特征[J]. 干旱区研究, 2019, 36(5):1079-1091.

    Qi GZ, Bai HY, Meng Q, Zhao T, Guo SZ. Climate change in the Qinling Mountains in spring during 1959-2018[J]. Arid Zone Research, 2019, 36(5):1079-1091.

    [25] 刘亚玲, 信忠保, 李宗善, 买尔当·克依木. 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异[J]. 生态学报, 2020, 40(24):9108-9119.

    Liu YL, Xin ZB, Li ZS, Maierdang Keyimu. Climate effect on the radial growth of Populus simonii in Northwest of Hebei for last four decades[J]. Acta Ecologica Sinica, 2020, 40(24):9108-9119.

    [26] 刘洪滨, 邵雪梅. 秦岭南坡佛坪1789年以来1-4月平均温度重建[J]. 应用气象学报, 2003, 14(2):188-196.

    Liu HB, Shao XM. Reconstruction of January to April mean temperature at Qinling Mountains from 1789 to 1992 using tree ring chronologies[J]. Journal of Applied Meteorological Science, 2003, 14(2):188-196.

    [27] 蔡秋芳, 刘禹, 王艳超. 陕西太白山树轮气候学研究[J]. 地球环境学报, 2012, 3(3):875-880.

    Cai QF, Liu Y, Wang YC. Dendroclimatic investigation of Chinese pine in Taibai Mountain, Shannxi province[J]. Journal of Earth Environment, 2012, 3(3):875-880.

    [28] 王慧敏. 秦岭山地油松树轮宽度对气候因子变化的响应[D]. 杨凌:西北农林科技大学, 2017.
    [29] 刘禹, 刘娜, 宋慧明. 以树轮宽度重建秦岭中段分水岭地区1-7月平均气温[J]. 气候变化研究进展, 2009, 5(5):260-265.

    Liu Y, Liu N, Song HM. Reconstructed mean air temperature from January to July at the divide sampling site in the Mid-Qinling Mountains with tree-ring widths[J]. Advances in Climate Change Research, 2009, 5(5):260-265.

    [30] 华亚伟, 张红娟, 刘康. 基于油松树轮重建陕西省镇安县165年以来3-4月平均最高气温[J]. 应用生态学报, 2020, 31(2):381-387.

    Hua YW, Zhang HJ, Liu K. Reconstruction of the March-April average maximum air temperature over 165 years based on Pinus tabuliformis tree-rings of Zhen'an County, Shaanxi Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2):381-387.

    [31] 刘禹, 马利民, 蔡秋芳, 安芷生. 依据陕西秦岭镇安树木年轮重建3-4月份气温序列[J]. 自然科学进展, 2001, 11(2):47-52. Liu Y, Ma LM, Cai QF, An ZS. Reconstruction of March to April temperature using tree ring data of Qinling Mountains, Shaanxi province[J]. Progress in Natural Science, 2001, 11(2):157-162.
    [32] 刘洪滨, 邵雪梅. 利用树轮重建秦岭地区历史时期初春温度变化[J]. 地理学报, 2003, 58(6):879-884.

    Liu HB, Shao XM. Reconstruction of early-spring temperature of Qinling Mountains using tree-ring chronologies[J]. Acta Geographica Sinica, 2003, 58(6):879-884.

    [33] 邵雪梅, 吴祥定. 华山树木年轮年表的建立[J]. 地理学报, 1994, 49(2):175-181.

    Shao XM, Wu XD. Tree-ring chronologies for Pinus armandi Franch. from Huashan, China[J]. Acta Geographica Sinica, 1994, 49(2):175-181.

    [34] 邓晨晖, 白红英, 翟丹平, 高山, 黄晓月, 等.气候变化背景下1964-2015年秦岭植物物候变化[J]. 生态学报, 2017, 37(23):7882-7893.

    Deng CH, Bai HY, Zhai DP, Gao S, Huang XY, et al. Variation in plant phenology in the Qinling Mountains from 1964-2015 in the context of climate change[J]. Acta Ecologica Sinica, 2017, 37(23):7882-7893.

    [35]

    Peterson DW, Peterson DL. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains[J]. Can J Forest Res, 1994, 24(9):1921-1932.

    [36] 陈慕亚, 刘康, 张红娟, 张越. 基于太白山南坡巴山冷杉NPP动态变化的时间序列模型预测效果对比[J]. 植物科学学报, 2020, 38(3):323-334.

    Chen MY, Liu K, Zhang HJ, Zhang Y. Comparison of time series models for predicting net primary productivity dynamic changes of Abies fargesii Franch. on the southern slopes of Taibai Mountain[J]. Plant Science Journal, 2020, 38(3):323-334.

    [37]

    Zhang H, Shao XM, Zhang Y. Which climatic factors limit radial growth of Qilian juniper (Juniperus przewalskii Kom.) at the upper tree line on the northeastern Tibetan Plateau?[J]. J. Geogr. Sci., 2015, 25(10):1173-1182.

    [38] 邵雪梅, 范金梅. 树轮宽资料所指示的川西过去气候变化[J]. 第四纪研究, 1999(1):81-89.

    Shao XM, Fan JM. Past climate changes in western Sichuan indicated by tree-ring width data[J]. Quaternary Sciences, 1999(1):81-89.

    [39]

    Liu Y, Linderholm HW, Song H, Temperature variations recorded in Pinus tabulaeformis tree rings from the sou-thern and northern slopes of the central Qinling Mountains, central China[J]. Boreas, 2008, 38:285-291.

    [40] 杨凤萍, 胡兆永, 侯琳, 蔡靖, 崔翠, 张硕新. 秦岭火地塘林区油松和华山松林乔木层净生产力与气候因子的关系[J]. 生态学报, 2014, 34(22):6489-6500.

    Yang FP, Hu ZY, Hou L, Cai J, Cui C, Zhang SX. Relationship between net primary productivity of tree layer in Pinus tabulaeformis and climate factors at Huoditang forest region in the Qinling Mountains[J]. Acta Ecologica Sinica, 2014, 34(22):6489-6500.

    [41]

    Liu B, Liang EY, Liu K, Camarero JJ. Species and elevation-dependent growth responses to climate warming of mountain forests in the Qinling Mountains, central China[J]. Forests, 2018, 9(5):248.

    [42] 陈兰, 李书恒, 侯丽, 史阿荣, 白红英. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应[J]. 应用生态学报, 2017, 28(8):2470-2480.

    Chen L, Li SH, Hou L, Shi AR, Bai HY. Response of La-rix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2470-2480.

    [43] 蒋冲, 王飞, 穆兴民, 李锐. 气候变化对秦岭南北植被净初级生产力的影响(Ⅱ)——近52年秦岭南北植被净初级生产力[J]. 中国水土保持科学, 2012, 10(6):45-51.

    Jiang C, Wang F, Mu XM, Li R. Effects of climate change on net primary productivity of vegetation in the northern and southern regions of the Qinling Mountains (Ⅱ):Net primary productivity of vegetation in recent 52a[J]. Science of Soil and Water Conservation, 2012, 10(6):45-51.

    [44] 方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9):967-973.

    Fang JY, Chen AP. Dynamic forest biomass carbon pools in China and their significance[J]. Chinese Bulletin of Bo-tany, 2001, 43(9):967-973.

计量
  • 文章访问数:  632
  • HTML全文浏览量:  6
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-22
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-06-27

目录

    /

    返回文章
    返回