Effects of Agrobacterium tumefaciens strain and its infection time and concentration on transient expression of foreign genes based on expression vector of bean yellow dwarf virus
-
摘要: 以3种常见的农杆菌菌株(GV3101、EHA105、LBA4404)和基于菜豆黄矮病毒的复制型植物表达载体为材料,利用农杆菌介导的瞬时转化技术,将外源绿色荧光蛋白(GFP)基因导入本氏烟(Nicotiana benthamiana L.)叶片中实现瞬时表达,并对不同农杆菌菌株、侵染浓度及侵染时间对于瞬时表达水平的影响进行比较。结果显示,3种不同的农杆菌菌株在介导转化本氏烟叶片瞬时表达GFP积累水平之间存在显著差异,其中EHA105菌株转化效率最高,LBA4404次之,GV3101最低。此外,GV3101、EHA105和LBA4404最适侵染浓度的OD600值分别为0.5、0.3和0.3;最佳侵染时间均为第4 d。研究结果表明农杆菌菌株染色体结构和Ti质粒的差异是影响瞬时转化过程中农杆菌侵染浓度及其外源基因瞬时表达效率的重要因素。Abstract: To explore the effects of different Agrobacterium tumefaciens strains and their time and concentration on the transient expression of foreign genes based on geminivirus expression vectors, three common A. tumefaciens strains and replicative plant expression vectors based on the bean yellow dwarf virus (BeYDV) were used as experimental materials. [JP+1]The exogenous green fluorescent protein (GFP) gene was introduced into Nicotiana benthamiana L. leaves to achieve transient expression by transient transformation mediated by A. tumefaciens. The effects of different A. tumefaciens strains, concentration, and time on transient expression were compared. Results showed significant differences among the three different strains of A. tumefaciens in the transient expression of GFP in N. benthamiana leaves. Among them, the transformation efficiency of strain EHA105 was the highest, followed by LBA4404, and then GV3101. In addition, the optimum concentrations of GV3101, EHA105, and LBA4404 were 0.5, 0.3, and 0.3, respectively, and the best time was 4 d. These results suggest that the differences in chromosome structure and Ti plasmid of the A. tumefaciens strains are important factors affecting the concentration of A. tumefaciens and the instantaneous expression efficiency of foreign genes during transient transformation.
-
-
[1] 赵文婷, 魏建和, 刘晓东, 高志晖. 植物瞬时表达技术的主要方法与应用进展[J]. 生物技术通讯, 2013, 24(2):294-300. Zhao WT, Wei JH, Liu XD, Gao ZH. Advance of the main methods and applications of plant transient expression system[J]. Letters in Biotechnology, 2013, 24(2):294-300.
[2] Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins[J]. Adv Tech Biol Med, 2013, 1(1):103.
[3] Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, et al. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins[J]. J Vis Exp, 2013, (77):50521.
[4] Peyret H, Lomonossoff GP. When plant virology met Agrobacterium:the rise of the deconstructed clones[J]. Plant Biotechnol J, 2015, 13(8):1121-1135.
[5] Abrahamian P, Hammond RW, Hammond J. Plant virus-derived vectors:applications in agricultural and medical biotechnology[J]. Annu Rev Virol, 2020, 7(1):513-535.
[6] Hefferon KL. DNA virus vectors for vaccine production in plants:spotlight on geminiviruses[J]. Vaccines (Basel), 2014, 2(3):642-653.
[7] Rybicki EP, Martin DP. Virus-derived ssDNA vectors for the expression of foreign proteins in plants[J]. Curr Top Microbiol Immunol, 2014, 375:19-45.
[8] Chen Q, He J, Phoolcharoen W, Mason HS. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants[J]. Hum Vaccin, 2011, 7(3):331-338.
[9] Zaidi SS, Mansoor S. Viral vectors for plant genome engineering[J]. Front Plant Sci, 2017, 8:539.
[10] Zhang X, Mason H. Bean yellow dwarf virus replicons for high-level transgene expression in transgenic plants and cell cultures[J]. Biotechnol Bioeng, 2006, 93(2):271-279.
[11] Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering[J]. Plant Cell, 2014, 26(1):151-163.
[12] Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection[J]. Virology, 2016, 493:113-127.
[13] Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses:masters at redirecting and reprogramming plant processes[J]. Nat Rev Microbiol, 2013, 11(11):777-788.
[14] 邱礽, 陶刚, 李奇科, 邱又彬, 刘作易. 农杆菌渗入法介导的基因瞬时表达技术及应用[J]. 分子植物育种, 2009, 7(5):1032-1039. Qiu R, Tao G, Li QK, Qiu YB, Liu ZY. Transient gene expression mediated by agroinfiltration and its application[J]. Molecular Plant Breeding, 2009, 7(5):1032-1039.
[15] 叶文兴, 孔令琪. 影响根癌农杆菌转化效率的因素综述[J]. 中国草地学报, 2019, 41(3):142-148. Ye WX, Kong LQ. Advanced in factors influencing agrobacterium tumefaciens-mediates transformation efficiency[J]. Chinese Journal of Grassland, 2019, 41(3):142-148.
[16] Hellens R, Mullineaux P, Klee H. Technical focus:a guide to Agrobacterium binary Ti vectors[J]. Trends Plant Sci, 2000, 5(10):446-451.
[17] 王从丽, 陆柏方, 张学成, 李广旭, 王劲波, 等. 农杆菌——植物间基因转移的分子基础[J]. 生命科学, 2002(1):1-5. Wang CL, Lu BF, Zhang XC, Li GX, Wang JB, et al. Molecular basis of Agrobacterium-plant gene transfer[J]. Chinese Bulletin of Life Sciences, 2002(1):1-5.
[18] 李东栋, 石玮, 邓秀新, 伊华林. 不同根癌农杆菌菌株对柑橘愈伤组织遗传转化效率的影响[J]. 华中农业大学学报, 2002(4):379-381. Li DD, Shi W, Deng XX, Yi HL. Influence of different strains on Agrobacterium-mediated callus transformation efficiency in citrus[J]. Journal of Huazhong Agricultural University, 2002(4):379-381.
[19] Gelvin SB. Agrobacterium-mediated plant transformation:the biology behind the "gene-jockeying" tool[J]. Micro-biol Mol Biol Rev, 2003, 67(1):16-37.
[20] 邹智, 卢长明. 影响农杆菌介导遗传转化的植物因子研究进展[J]. 生物技术通报, 2008(1):1-9. Zou Z, Lu CM. An Overview of plant factors influencing Agrobacterium-mediated transformation[J]. Biotechnology Bulletin, 2008(1):1-9.
[21] 李卫, 董文, 周菲, 郭光沁, 郑国錩. 参与在农杆菌介导遗传转化过程中的植物因子研究进展[J]. 中国生物工程杂志, 2003(12):62-67. Li W, Dong W, Zhou F, Guo GQ, Zhen GC. Progress of study on plant factors that participated in Agrobacterium tumefaciens-mediated transformation[J]. China Biotechnology, 2003(12):62-67.
[22] 郭晓丽. 根癌农杆菌介导植物遗传转化的分子机制[J]. 衡水学院学报, 2008(1):52-54. Guo XL. Molecular basis of Agrobacterium tumefaciens-mediated transformation for plant[J]. Journal of Hengshui University, 2008(1):52-54.
[23] He F, Nair GR, Soto CS, Chang Y, Hsu L, et al. Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens[J]. J Bacteriol, 2009, 191(18):5802-5813.
[24] 王根平, 张婷, 师志刚, 程汝宏. 农杆菌T-DNA传递相关基因研究进展[J]. 分子植物育种, 2017, 15(5):1752-1761. Wang GP, Zhang T, Shi ZG, Cheng RH. Research progress on T-DNA transfer related genes mediated of Agrobacterium[J]. Molecular Plant Breeding, 2017, 15(5):1752-1761.
[25] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51:223-256.
[26] Sun Y, Qian H, Xu XD, Han Y, Yen LF, Sun DY. Integrin-like proteins in the pollen tube:detection, localization and function[J]. Plant Cell Physiol, 2000, 41(10):1136-1142.
[27] Ditt RF, Nester EU, Comai L. Plant gene expression response to Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA, 2001, 98(19):10954-10959.
[28] Poborilova Z, Plchova H, Cerovska N, Gunter CJ, Hitzeroth II, et al. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors[J]. Plant Cell Rep, 2020, 39(9):1115-1127.
[29] James E, Lee JM. The production of foreign proteins from genetically modified plant cells[J]. Adv Biochem Eng Biotechnol, 2001, 72:127-156.
[30] Holland T, Sack M, Rademacher T, Schmale K, Altmann F, et al. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture[J]. Biotechnol Bioeng, 2010, 107(2):278-289.
[31] Tsoi BM, Doran PM. Effect of medium properties and additives on antibody stability and accumulation in suspended plant cell cultures[J]. Biotechnol Appl Biochem, 2002, 35(3):171-180.
[32] Raven N, Schillberg S, Rasche S. Plant cell-based recombinant antibody manufacturing with a 200 L orbitally shaken disposable bioreactor[J]. Methods Mol Biol, 2016, 1385:161-172.
-
期刊类型引用(2)
1. 蔡玉婷,茹毅,孙坤,张继,吴建平,李丹,冯汉青. 植物中表达口蹄疫病毒抗原研究进展. 生物工程学报. 2023(04): 1548-1561 . 百度学术
2. 鲜彬,徐翔铭,吴清华,任超翔,陈江,裴瑾. 农杆菌和基因枪介导的瞬时表达方法研究综述. 中药与临床. 2022(05): 110-117 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 937
- HTML全文浏览量: 28
- PDF下载量: 518
- 被引次数: 8