高级检索+

寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展

冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎

冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎. 寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J]. 植物科学学报, 2021, 39(3): 316-323. DOI: 10.11913/PSJ.2095-0837.2021.30316
引用本文: 冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎. 寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J]. 植物科学学报, 2021, 39(3): 316-323. DOI: 10.11913/PSJ.2095-0837.2021.30316
Feng Dan-Dan, Deng Lei, Wang Zu-Peng, Pan Hui, Li Wen-Yi, Zhong Cai-Hong, Li Li. Research progress on host-induced gene silencing to promote plant resistance against fungal disease[J]. Plant Science Journal, 2021, 39(3): 316-323. DOI: 10.11913/PSJ.2095-0837.2021.30316
Citation: Feng Dan-Dan, Deng Lei, Wang Zu-Peng, Pan Hui, Li Wen-Yi, Zhong Cai-Hong, Li Li. Research progress on host-induced gene silencing to promote plant resistance against fungal disease[J]. Plant Science Journal, 2021, 39(3): 316-323. DOI: 10.11913/PSJ.2095-0837.2021.30316
冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎. 寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J]. 植物科学学报, 2021, 39(3): 316-323. CSTR: 32231.14.PSJ.2095-0837.2021.30316
引用本文: 冯丹丹, 邓蕾, 汪祖鹏, 潘慧, 李文艺, 钟彩虹, 李黎. 寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展[J]. 植物科学学报, 2021, 39(3): 316-323. CSTR: 32231.14.PSJ.2095-0837.2021.30316
Feng Dan-Dan, Deng Lei, Wang Zu-Peng, Pan Hui, Li Wen-Yi, Zhong Cai-Hong, Li Li. Research progress on host-induced gene silencing to promote plant resistance against fungal disease[J]. Plant Science Journal, 2021, 39(3): 316-323. CSTR: 32231.14.PSJ.2095-0837.2021.30316
Citation: Feng Dan-Dan, Deng Lei, Wang Zu-Peng, Pan Hui, Li Wen-Yi, Zhong Cai-Hong, Li Li. Research progress on host-induced gene silencing to promote plant resistance against fungal disease[J]. Plant Science Journal, 2021, 39(3): 316-323. CSTR: 32231.14.PSJ.2095-0837.2021.30316

寄主诱导的基因沉默在增强植物真菌病害抗性方面的研究进展

基金项目: 

国家自然科学基金项目(31701974,31901980);武汉市科技局前资助科技计划(2018020401011307)。

详细信息
    作者简介:

    冯丹丹(1998-),女,硕士研究生,研究方向为猕猴桃真菌病害的致病机理及抗性种质创制(E-mail:1611397082@qq.com)。

    通讯作者:

    钟彩虹,E-mail:zhongch1969@163.com

    李黎,E-mail:lili@wbgcas.cn

  • 中图分类号: Q943.2

Research progress on host-induced gene silencing to promote plant resistance against fungal disease

Funds: 

This study was supported by grants from the National Natural Science Foundation of China (31701974, 31901980) and Science and Technology Program Funded by Wuhan Science and Technology Bureau (2018020401011307).

  • 摘要: 寄主诱导的基因沉默(host-induced gene silencing,HIGS)技术以RNAi技术为基础,可从反向遗传学角度研究基因功能,同时可创制具有持久抗性且稳定遗传的抗病品种,为增强植物抗病性提供了新的视角。本文阐明了HIGS技术的原理,总结了近年来该技术在增强植物真菌病害抗性方面最新的研究进展,分析了HIGS技术的优、缺点,并对HIGS技术的应用前景进行了展望。
    Abstract: Host-induced gene silencing (HIGS) is a new technology based on RNA interference (RNAi). HIGS can identify gene functions from the view of reverse genetics and create disease resistant varieties with persistent resistance and stable inheritance. Thus, HIGS provides a new perspective for promoting plant disease resistance. In the current paper, we discuss the principles of HIGS technology, summarize the latest research progress in enhancing plant resistance against fungal diseases, and analyze the advantages and disadvantages of HIGS. Future prospects of HIGS technology are also discussed, with a focus on in-depth study of plant resistance.
  • [1] 赵美, 皮磊, 郑文博, 刘艳潇, 周而勋, 舒灿伟. 寄主诱导的基因沉默在丝状真菌中应用的最新研究进展[J]. 分子植物育种, 2018, 16(23):7689-7694.

    Zhao M, Pi L, Zheng WB, Liu YX, Zhou EX, Shu CW. Latest research progress on the application of host induced gene silencing in filamentous fungi[J]. Molecular Plant Breeding, 2018, 16(23):7689-7694.

    [2] 朱晓果. 小麦条锈菌MAPK信号通路介导的致病机理及其在抗锈育种中的应用[D]. 杨凌:西北农林科技大学, 2017.
    [3]

    Ghag SB. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens[J]. Mol Plant Pathol, 2017, 100:242-254.

    [4] 张河山, 胡亚亚, 张娜, 魏学军, 杨文香, 刘大群. 寄主诱导的基因沉默(HIGS)技术研究进展[J]. 农业生物技术学报, 2013, 21(5):603-611.

    Zhang HS, Hu YY, Zhang N, Wei XJ, Yang WX, Liu DQ. Progress of host-induced gene silencing (HIGS) techno-logy[J]. Journal of Agricultural Biotechnology, 2013, 21(5):603-611.

    [5] 程伟, 李和平, 何水林, 廖玉才. 寄主诱导的基因沉默提高植物真菌病害抗性研究进展[J]. 作物学报, 2017, 43(8):1115-1121.

    Cheng W, Li HP, He SL, Liao YC. Progress in enhancement of plant resistance against fungal diseases through host-induced gene silencing[J]. Acta Agronomica Sinica, 2017, 43(8):1115-1121.

    [6]

    Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010, 22(9):3130-3141.

    [7]

    Tinoco ML, Dias BB, Dall'Astta RC, Pamphile JA, Aragao FJ. In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA[J]. BMC Biol, 2010, 8(1):27.

    [8]

    Panwar V, McCallum B, Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Pucccinia triticina pa-thogenicity genes mediated by the Barley stripe mosaic virus[J]. Plant Mol Biol, 2013, 81(6):595-608.

    [9] 何付新. 利用RNAi技术研究小麦条锈菌候选关键蛋白激酶基因[D]. 杨凌:西北农林科技大学, 2015.
    [10]

    Tang CL, Wei JP, Han QM, Liu R, Duan XY, et al. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth[J]. Sci Rep, 2015, 5(1):11241.

    [11]

    Zhu L, Zhu J, Liu ZX, Wang ZY, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mo-saic virus[J]. Genes, 2017, 8(10):241.

    [12] 戚拓. 条锈菌重要致病因子 PstGSRE1和PstCPK1致病机理研究及利用HIGS技术创制小麦持久抗条锈病材料[D]. 杨凌:西北农林科技大学, 2018.
    [13] 温拯. 小麦条锈菌效应蛋白Pst03724的功能分析及利用HIGS技术创制抗病新材料[D]. 杨凌:西北农林科技大学, 2019.
    [14]

    Yang Q, Huai BY, Lu YX, Cai KY, Guo J, et al. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease[J]. New Phytol, 2020, 225(2):880-895.

    [15]

    Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, et al. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors[J]. Mol Plant Microbe Interact, 2013, 26(6):633-642.

    [16] 张美惠. 高温胁迫下小麦白粉病菌Hsp基因表达研究及HIGS体系的建立[D]. 北京:中国农业科学院, 2019.
    [17] 刘强. 小麦条锈菌细胞壁相关基因的寄主诱导转基因沉默研究[D]. 泰安:山东农业大学, 2015.
    [18]

    Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, et al. Host-induced silencing of Fusarium culmorum genes protects wheat from infection[J]. J Exp Bot, 2016, 67(17):4979-4991.

    [19]

    Cheng W, Song XS, Li HP, Cao LH, Sun K, et al. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seeding blight in wheat[J]. Plant Biotechnol J, 2015, 13(9):1335-1345.

    [20]

    Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. Proc Natl Acad Sci USA, 2013, 110(48):19324-19329.

    [21] 谭成龙, 马微, 郭军. 利用HIGS技术创制短柄草抗赤霉病材料[C]//中国植物病理学会. 中国植物病理学会2017年学术年会论文集. 北京:中国农业科学技术出版社, 2017.
    [22] 唐喆, 张强, 项萍. RHO1基因的HIGS表达载体构建及转基因水稻的抗病性分析[J]. 西北农林科技大学学报(自然科学版), 2018, 46(8):39-46.

    Tang Z, Zhang Q, Xiang P. Construction of HIGS expression vector of RHO1 gene and disease resistance of transgenic rice[J]. Journal of Northwest A & F University (Na-tural Science Edition), 2018, 46(8):39-46.

    [23] 陈培培. 寄主诱导的基因沉默在油菜抗菌核病改良中的应用[D]. 扬州:扬州大学, 2020.
    [24] 赵玉兰. 利用基因沉默验证大丽轮枝菌糖代谢相关基因的致病力[D]. 北京:中国农业科学院, 2015.
    [25]

    Ghag SB, Shekhawat UK, Ganapathi TR. Host-induced post-transtriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana[J]. Plant Biotechnol J, 2014, 12(5):541-553.

    [26]

    Jahan SN, Asman AKM, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans[J]. J Exp Bot, 2015, 66(9):2785-2794.

    [27]

    Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce[J]. Plant Biotechnol J, 2015, 13(7):875-883.

    [28]

    Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, et al. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticilliu dahlia[J]. Mol Plant, 2016, 9(6):939-942.

    [29]

    Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, et al. Cotton plants export micro-RNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nat Plants, 2016, 2(10):3130-3141.

    [30] 金芸, 张涛, 郭惠珊. 基因沉默技术在抗真菌病害中的应用和展望[J]. 生物工程学报, 2017, 33(2):161-169.

    Jin Y, Zhang T, Guo HS. Application of host induced gene silencing in crop protection against fungal diseases[J]. Chinese Journal of Biotechnology, 2017, 33(2):161-169.

    [31]

    Wei CY, Qin TF, Li YQ, Wang WP, Dong T, Wang QL. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.)[J]. Biochem Biophys Res Commun, 2020, 524(2):392-397.

    [32] 柴亚茹, 丁一娟, 周思钰, 杨文静, 闫宝琴, 等. HIGS-SsCCS转基因拟南芥的菌核病抗性鉴定[J]. 中国农业科学, 2020, 53(4):761-770.

    Chai YR, Ding YJ, Zhou SY, Yang WJ, Yan BQ, et al. Identification of the resistance to Sclerotinia stem rot in HIGS-SsCCS transgenic Arabidopsis thaliana[J]. Scientia Agricultura Sinica, 2020, 53(4):761-770.

    [33] 郭亚路, 刘征, 严婷, 杜羽, 单卫星. 寄主诱导的基因沉默对辣椒疫霉菌的影响[J]. 西北农业学报, 2019, 28(12):2053-2059.

    Guo YL, Liu Z, Yan T, Du Y, Shan WX. Host-induced gene silencing is effective against Phytophthora capsici in Nicotiana benthamiana[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(12):2053-2059.

    [34]

    Thakur O, Prasad R. Engineering resistance to Alternaria cyamopsidis by RNAi mediated gene silencing of chitin synthase export chaperone CHS7in guar[J]. Physioly Mol Plant P, 2020, 112(1):101541.

    [35]

    Meng Y, Shao C, Wang H, Jin Y. Target mimics:an embedded layer of microRNA-involved gene regulatory networks in plants[J]. BMC Genomics, 2012, 13(1):197.

    [36]

    Weiberg A, Wang M, Lin FM, Zhao HW, Zhang ZH, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342(6154):118-123.

    [37]

    Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nat Plants, 2016, 2(10):16151.

    [38]

    Nunes CC, Dean RA. Host-induced gene silencing:a tool for understanding fungal host interaction and for developing novel disease control strategies[J]. Mol Plant Pathol, 2012, 13(5):519-529.

    [39]

    Wang M, Jin H. Spray-induced gene silencing:a powerful innovative strategy for crop protection[J]. Trends Micro-biol, 2017, 25(1):4-6.

    [40]

    Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs[C]//Deising HB, Fraaije B, Mehl A, Oerke EC, Sierotaki H, Stammler G, eds. Modern Fungicides and Antifungal CompoundsⅧ. Friedrichroda:DPG Sprctrum Phytomedizin Publisher, 2016:63-66.

    [41] 孟旭. 禾谷镰刀菌FgCNA和FgCNB基因沉默载体的构建及其对禾谷镰刀菌生理功能影响的研究[D]. 泰安:山东农业大学, 2020.
    [42]

    Xu J, Wang XY, Li YG, Zeng JG, Wang GL, et al. Host-induced gene silencing of a regulator of G protein signaling gene (VdRGS1) confers resistance to Verticillium wilt in cotton[J]. Plant Biotechnol J, 2018, 16(9):1629-1643.

    [43]

    Qiao LL, Lan C, Capriotti L, Fong-Ah A, Sanchez JN, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnol J, 2021.doi.org/10.1111/pbi.13589.

    [44]

    Cai Q, He BY, Kogel KH, Jin HL. Cross-kingdom RNA trafficking and environmental RNAi-natures blueprint for modern crop protection strategies[J]. Curr Opin Micro-biol, 2018, 46:58-64.

    [45] 肖瑶, 王教瑜, 李玲, 王艳丽, 张传清, 孙国昌. 寄主诱导的基因沉默技术研究和应用进展[J]. 植物保护学报, 2020, 47(1):11-17.

    Xiao Y, Wang JY, Li L, Wang YL, Zhang CQ, Sun GC. Advances in researches and applications of host-induced gene silencing technology[J]. Journal of Plant Protection, 2020, 47(1):11-17.

    [46] 刘友梅, 薛敏峰,史文琦,黄薇,袁斌. 寄主诱导的基因沉默在改良作物抗病虫性方面的应用[J]. 湖北农业科学, 2017, 56(23):4454-4460.

    Liu YM, Xue MF, Shi WQ, Huang W, Yuan B. The application of host-induced gene silencing in improving the resistance of crop to disease and insect[J]. Hubei Agricultural Sciences, 2017, 56(23):4454-4460.

    [47]

    Baulcombe DC. VIGS, HIGS and FIGS:small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts[J]. Curr Opin Plant Biol, 2015, 26(1):141-146.

    [48]

    Nakayashiki H, Nguyen QB. RNA interference:roles in fungal biology[J]. Curr Opin Microbiol, 2008, 11(6):494-502.

    [49]

    Spiering MJ, Moon CD, Wilkinson HH, Schardl CL. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum[J]. Genetics, 2005, 169(3):1403-1414.

    [50]

    Zhang MX, Wang QH, Xu K, Meng YL, Quan JL, Shan WX. Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica[J]. PLoS One, 2011, 6(11):e28114.

    [51]

    Yin CT, Jurgenson JE, Hulbert SH. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici[J]. Mol Plant Microbe Inte-ract, 2011, 24(5):554-561.

    [52]

    Shahid S, Kim G, Johnson NR, Wafula E, Wang F, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs[J]. Nature, 2018, 553(7686):82-85.

    [53]

    Hou YN, Ma WB. Natural host-induced gene silencing offers new opportunities to engineer disease resistance[J]. Trends Microbiol, 2020, 28(2):109-117.

  • 期刊类型引用(7)

    1. 张文香,杨再琴,潘柔柔,罗倩倩,吴超,曹剑锋. 百蕊草苯丙氨酸解氨酶基因的克隆与表达分析. 分子植物育种. 2025(04): 1098-1104 . 百度学术
    2. 赵咏洋,陈维嘉,丁静峰,敖以恒,冯傲,周嘉裕. 决明苯丙氨酸解氨酶(PAL)基因家族的全基因组分析. 湖北农业科学. 2023(06): 181-187 . 百度学术
    3. 杨翠凤,滕峥,韦春,刘正鲁. 百香果苯丙氨酸解氨酶基因PePAL克隆及表达分析. 河南农业科学. 2023(10): 100-108 . 百度学术
    4. 周成城,谢德金,万志庭,陈凌艳,郑郁善. 巴戟天苯丙烷类代谢途径相关基因的克隆与表达. 应用与环境生物学报. 2021(01): 158-166 . 百度学术
    5. 郭英男,刘月扬,马静雨,张敬,马鑫彤,张馨月,刘建雨,姚娜,刘秀明,李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药. 2021(11): 3362-3372 . 百度学术
    6. 乔枫,贺杰,耿贵工,王汉,张勐,郭晨微,陈剑云,谢惠春. 铯胁迫下青稞幼苗生理指标和苯丙氨酸解氨酶基因表达的变化. 分子植物育种. 2020(24): 8255-8266 . 百度学术
    7. 赵历强,单春苗,张声祥,施圆圆,马克龙,吴家文. 基于转录组测序的细风轮花青素合成途径及关键酶基因分析. 植物研究. 2020(06): 886-896 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  678
  • HTML全文浏览量:  33
  • PDF下载量:  532
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-12-03
  • 修回日期:  2020-12-03
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-06-27

目录

    /

    返回文章
    返回