Biogeographical patterns and floral evolution of Oreocharis (Gesneriaceae)
-
摘要: 本文系统总结了广义马铃苣苔属(Oreocharis)的地理分布范围和花部特征,利用核基因ITS1、ITS2和叶绿体基因trnL-trnF重建广义马铃苣苔属主要物种的分子系统关系,并结合花部特征和地理分布特点分析花部特征的适应性与演化规率。结果显示:广义马铃苣苔属可分为两个支系,一个支系主要分布于中国西南地区,以黄色花冠、雄蕊4为主;另一个支系则集中分布于中国南部与东南部区域,以紫色花冠为主,并出现了雄蕊2的特化类群。广义马铃苣苔属花冠发生了两侧对称向辐射对称的演化。海南岛分布的所有4个物种都是该岛的特有种,来源于一个共同祖先(可能是花冠亮黄色、花辐射对称),后期逐渐出现花冠橙红色、两侧对称等性状。高山深谷的地理隔离作用、不同生境的隔离作用以及以不同蜂类传粉者类群的趋异选择是马铃苣苔属物种花部特征多样性演化的主要原因。Abstract: We examined the geographical distribution ranges and floral traits of Oreocharis and used nuclear ITS1,ITS2 and chloroplast trnL-trnF sequences of 58 Oreocharis species to construct a phylogenetic tree. We then analyzed the adaptation and evolution of floral traits based on the above data. Results showed the Oreocharis could be separated into two clades. Clade A was mainly distributed in Southwest China and predominantly showed yellow corollas with four stamens; Clade B was mainly distributed in South and Southeast China and predominantly showed purple corollas, with several species evolving two stamens. Corolla evolution from zygomorphy to actinomorphy was also detected. All four Hainan-endemic Oreocharis taxa originated from a common ancestor with bright yellow and radial corollas, later evolving orange and bilateral corollas. Geographical isolation, soil heterogeneity, and divergent selection on diverse bee pollinators were identified as key factors in the evolution and diversity of floral traits in Oreocharis.
-
Keywords:
- Didymocarpoideae /
- Oreocharis /
- Species diversity /
- Floral syndromes /
- Pollination /
- Adaptive evolution
-
-
[1] 韦毅刚. 华南苦苣苔科植物[M]. 南宁:广西科学技术出版社, 2010. [2] Weber A, Clark JR, Möller M. A new formal classification of Gesneriaceae[J]. Selbyana, 2013, 31(2):68-94.
[3] Harrison CJ, Möller M, Cronk QCB. Evolution and deve-lopment of floral diversity in Streptocarpus and Saintpaulia[J]. Ann Bot, 2003, 84(1):49-60.
[4] Martén-Rodríguez S, Fenster CB, Agnarsson I, Skog LE, Zimmer EA. Evolutionary breakdown of pollination specialization in a Caribbean plant radiation[J]. New Phytol, 2010, 188(2):403-417.
[5] Perret M, Chautems A, Araujo A, Salamin N. Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences[J]. Bot J Linn Soc, 2013, 171(1):61-79.
[6] Roalson EH, Roberts W. Distinct processes drive diversification in different clades of Gesneriaceae[J]. Syst Biol, 2016, 65(4):662-684.
[7] Möller M, Middleton D, Nishii K, Wei YG, Sontag S, Weber A. A new delineation for Oreocharis incorporating an additional ten genera of Chinese Gesneriaceae[J]. Phytotaxa, 2011, 23(1):1-36.
[8] Chen WH, Zhang YM, Guo SW, Zhang ZR, Chen L, Shui YM. Reassessment of Bournea Oliver (Gesneriaceae) based on molecular and palynological evidence[J]. Phytokeys, 2020, 157(3):27-41.
[9] 温放, 黎舒, 辛子兵, 符龙飞, 蔡磊, 等. 新中文命名规则下的最新中国苦苣苔科植物名录[J]. 广西科学, 2019, 35(1):1-8. Wen F, Li S, Xin ZB, Fu FL, Cai L, et al. The updated plant list of Gesneriaceae in China under the new Chinese naming rules[J]. Guangxi Sciences, 2019, 35(1):1-8.
[10] 李振宇, 王印政. 中国苦苣苔科植物[M]. 郑州:河南科学技术出版社, 2005. [11] Martén-Rodríguez S, Almarales-astro A, Fenster CB. Evaluation of pollination syndromes in Antillean Gesne-riaceae:evidence for bat, hummingbird and generalized flowers[J]. J Ecol, 2009, 97(2):348-359.
[12] Ling SJ, Meng QW, Tang L, Ren MX. Pollination syndromes of Chinese Gesneriaceae:a comparative study between Hainan Island and neighboring regions[J]. Bot Rev, 2017, 83(1):59-73.
[13] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19(1):11-15.
[14] White TJ, Bruns TD, Lee SB, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//Innis M, Gelfand D, Sninsky J, White TJ, eds. PCR Protocols:A Guide to Methods and Application. San Diego:Academic Press, 1990.
[15] Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5):1105-1109.
[16] Ling SJ, Qin XT, Song XQ, Zhang LN, Ren MX. Genetic delimitation of Oreocharis species from Hainan Island[J]. PhytoKeys, 2020, 157(5):59-81.
[17] Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucl Acids Symp Ser, 1999, 41(1):95-98.
[18] Kumar S, Nei M, Dudley J, Tamura K. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Brief Bioinform, 2008, 9(4):299-306.
[19] Swofford DL. PAUP*:Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0B10[CP]. Sunderland:Sinauer Associates, 2003.
[20] Vaidya G, Lohman DJ, Meier R. SequenceMatrix:conca-tenation software for the fast assembly of multi-gene datasets with character set and codon information[J]. Cladistics, 2011, 27(2):171-180.
[21] Akaike H. Likelihood of a model and information criteria[J]. J Econometrics, 1981, 16(1):3-14.
[22] Nylander JAA. MrModeltest v2. Program Distributed by the Author[CP]. Uppsala:Evolutionary Biology Centre, Uppsala University, 2004.
[23] Huelsenbeck JP, Ronquist F. MRBAYES:Bayesian infe-rence of phylogenetic trees[J]. Bioinformatics, 2001, 17(8):754-755.
[24] Chung KF, Leong WC, Rubite RR, Repin R, Kiew R, et al. Phylogenetic analyses of Begonia sect. Coelocentrum and allied limestone species of China shed light on the evolution of Sino-Vietnamese karst flora[J]. Bot Stud, 2014, 55(1):1.
[25] Gao Y, Ai B, Kong H, Kang M, Huang HW. Geographical pattern of isolation and diversification in karst habitat islands:a case study in the Primulina eburnea complex[J]. J Biogeogr, 2015, 42(11):2131-2144.
[26] Tan K, Lu T, Ren MX. Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy[J]. Phytokeys, 2020, 157(2):7-26.
[27] López-Pujol J, Ren MX. China:a hot spot of relict plant taxa[M]//Rescigno V, Maletta S, eds. Biodiversity Hotspots. New York:Nova Publishers, 2009.
[28] 姜超, 谭珂, 任明迅. 季风对亚洲热带植物分布格局的影响[J]. 植物生态学报, 2017, 41(10):1103-1112. Jiang C, Tan K, Ren MX. Effects of monsoon on distribution patterns of tropical plants in Asia[J]. Chinese Journal of Plant Ecology, 2017, 41(10):1103-1112.
[29] 韦毅刚. 广西本土植物及其濒危状况[M]. 北京:中国林业出版社, 2018. [30] An Z, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(3):62-66.
[31] 俞筱押, 李家美, 任明迅. 中国南方苦苣苔科植物在喀斯特地貌和丹霞地貌上的适应分化[J]. 广西科学, 2019, 26(1):1-8. Yu XY, Li JM, Ren MX. Adaptive differentiation of Gesne-riaceae on karst and danxia landforms in South China[J]. Guangxi Sciences, 2019, 26(1):1-8.
[32] Erwin DH. Climate as a driver of evolutionary change[J]. Curr Biol, 2009, 19:R575-R583.
[33] Sun XJ, Wang PX. How old is the Asian monsoon system? Palaeobotanical records from China[J]. Palaeogeogr Palaeocl, 2005, 222(3/4):181-222.
[34] Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, et al. A major reorganization of Asian climate by the early Miocene[J]. Clim Past, 2008, 4(3):153-174.
[35] Kong HH, Condamine FL, Harris AJ, Chen JL, Pan B, et al. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the Karst ecosystems from southern China[J]. Mol Ecol, 2017, 26(22):6414-6429.
[36] Rohde K. Latitudinal gradients in species diversity:the search for the primary cause[J]. Oikos, 1992, 65(3):514-527.
[37] Ren MX. The upper reaches of the largest river in Southern China as an "evolutionary front" of tropical plants:evidences from Asia-endemic genus Hiptage (Malpighia-ceae)[J]. Collect Bot, 2015, 34(1):e003.
[38] 何锴, 蒋学龙. 中国西南地区的"天空之岛":Ⅰ系统地理学研究概述[J]. 科学通报, 2014, 59(12):1055-1068. He K, Jiang XL. Sky islands of southwest China.Ⅰ. An overview of phylogeographic patterns[J]. Chin Sci Bull, 2014, 59(12):1055-1068.
[39] Jabbour F, Renner S. A phylogeny of Delphinieae (Ranunculaceae) shows Aconitum is nested within Delphinium and that late Miocene transitions to long life cycles in the Himalayas and southwest China coincide with bursts in diversification[J]. Mol Phylogenet Evol, 2012, 62(3):928-942.
[40] Sun Y, Wang A, Wan D, Wang Q, Liu J. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits[J]. Mol Phylogenet Evol, 2012, 63(1):150-158.
[41] Zhang JQ, Meng SY, Allen GA, Wen J, Rao GY. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae)[J]. Mol Phylogenet Evol, 2014, 77(2014):147-158.
[42] Ling SJ, Guan SP, Wen F, Shui YM, Ren MX. Oreocharis jasminina (Gesneriaceae), a new species from mountain tops of Hainan Island, South China[J]. PhytoKeys, 2020, 157(9):121-135.
[43] Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals?[J]. Oikos, 2011, 120(3):321-326.
[44] Möller M, Nampy S, Janeesha AP, Weber A. The Gesneriaceae of India:consequences of updated generic concepts and new family classification[J]. Rheedea, 2017, 27(1):23-41.
[45] Hilliard OM. The genus Agalmyla (Gesneriaceae-Cyrtandroideae)[J]. Edinb J Bot, 2002, 59(1):1-210.
[46] Guo YF, Wang YQ, Weber A. Floral ecology of Oreocharis acaulis (Gesneriaceae):An exceptional case of "preanthetic" protogyny combined with approach herkogamy[J]. Flora, 2013, 208(1):58-67.
[47] Guo YF, Wang YQ. Floral ecology of Oreocharis pumila (Gesneriaceae):a novel case of sigmoid corolla[J]. Nord J Bot, 2014, 32(2):215-221.
[48] 吴燕如, 何琬, 王淑芳. 云南植物志[M]. 昆明:云南科技出版社, 1988. [49] Wang YZ, Liang RH, Wang BH, Li JM, Qiu ZJ, et al. Origin and phylogenetic relationships of the Old World Gesneraiceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences[J]. Taxon, 2010, 59(4):1044-1052.
[50] Heiling AM, Herberstein ME, Chittka L. Pollinator attraction:crab-spiders manipulate flower signals[J]. Nature, 2003, 421(6921):334.
[51] 申效铖, 刘新涛, 任应党, 申琪, 刘晓光, 张书杰. 中国昆虫区系的多元相似性聚类分析和地理区划[J]. 昆虫学报, 2013, 56(8):896-906. Shen XC, Liu XT, Ren YD, Shen Q, Liu XG, Zhang SJ. The multivariate similarity clustering analysis and geographical division of insect fauna in China[J]. Acta Ent Sin, 2013, 56(8):896-906.
-
期刊类型引用(5)
1. 胡梦露,李宗艳,任书娴,杨建伟,伍倩,冯尧,叶松菩. 云南26种石斛种质资源的形态分类与亲缘关系. 江苏农业科学. 2025(01): 191-200 . 百度学术
2. 陶凯锋,朱永,王乐骋,张颖铎,李璐. 两种玉凤花属植物的花结构和合蕊柱超微特征及其分类学意义. 广西植物. 2024(01): 89-101 . 百度学术
3. 贺漫媚,代色平,陈秀萍,吴俭峰,刘国锋,阮琳,王伟. 17种石斛属植物表型性状多样性分析. 植物资源与环境学报. 2024(02): 71-79+90 . 百度学术
4. 涂国章,张显强. DNA条形码技术在石斛分类鉴定中的应用进展. 食品安全质量检测学报. 2023(02): 154-160 . 百度学术
5. 尚明越,王嘉乐,周莹,张满常,刘颖琳,段宝忠. 濒危紫皮石斛叶绿体基因组结构及系统发育分析. 中草药. 2023(19): 6424-6433 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 511
- HTML全文浏览量: 5
- PDF下载量: 531
- 被引次数: 8