Growth and reproduction of Amygdalus tangutica (Batal.) Korsh. population in arid valley sites along the Minjiang River
-
摘要: 以西康扁桃(Amygdalus tangutica(Batal.) Korsh.)为材料,在岷江干旱河谷四川省阿坝藏族羌族自治州茂县至松潘段设置47个调查点进行该物种的自然分布调查;选取4个典型分布点,随机选择20株灌丛,测定西康扁桃的年龄、基径、高度、冠幅等生长指标以及结实量、结实重量等特征指标;并设置5个4 m×6 m的灌木样方,调查西康扁桃的群落结构与物种组成情况。结果显示:西康扁桃广泛分布于岷江上游干旱河谷,并在松潘县南部安宏乡形成优势群落,群落主要由灌木及多年生草本植物组成,物种丰富度较高(43~55种/24 m2);西康扁桃当年结实量较小,平均值为(8.83 ±2.25)粒/丛;灌丛平均萌生枝数为(7.38 ±0.46)枝/丛,其中25.68%的萌生枝处于5~10 a的年龄阶段,而果重/枝叶重仅为(0.69 ±0.16)%,表明其结实能力较低,主要依靠产生萌生枝维持种群稳定;各生长与结实参数关系密切,灌丛年龄、高度是影响结实量的主要因素。研究结果表明,西康扁桃广泛分布于岷江上游干旱河谷内,灌丛有性繁殖贡献率较低,依靠无性繁殖维持群落稳定,亟需开展资源保护。Abstract: Amygdalus tangutica (Batal.) Korsh. is a native shrub species with high ecological and economic value found in the arid valley area of Southwest China. Here, we surveyed arid valley sites along the Minjiang River from the Maoxian to Songpan counties. We recorded 47 survey points where A. tangutica was abundant. Among these points, five plots were established to investigate community structure. Six shrub quadrats and 12 herb quadrats were investigated in each plot. To examine vegetative and reproductive characteristics, four sites were selected, with 20 shrubs randomly selected at each site. Variables of shrub and ramet growth (e.g., age, height, basal diameter, canopy area, branch number) and reproduction (e.g., number of fruits and fresh weight of fruit) were determined. Results showed that:(1) A. tangutica formed communities with high species richness (43-55 species/24 m2) and was widely distributed in the arid valley sites along the Minjiang River. (2) An average of 8.83 ±2.25 fruits were found on each shrub. (3) An average of 7.38 ±0.46 sprouts were found on each shrub, with 25.68% of sprouts within the age range of 5-10 years. The ratio of fruit weight to vegetative organ weight was only (0.69 ±0.16)%, indicating weak sexual reproduction capacity. (4) Growth and fruiting parameters were significantly correlated, and fruit number was significantly affected by age and height. Our results suggest that A. tangutica has adapted to the arid valley environment by producing sprouts. However, resource conservation is urgently needed.
-
Keywords:
- Arid valley /
- Amygdalus tangutica /
- Vegetation restoration /
- Reproduction
-
-
[1] 朱强, 李永华, 李瑞, 贾巧霞. 四川扁桃种仁的含油率及其脂肪酸组成分析[J]. 西部林业科学, 2013, 42(4):100-103. Zhu Q, Li YH, Li R, Jia QX. Analysis on oil content and fatty acid composition of Amygdalus tangutica seed kernel[J]. Journal of West China Forestry Science, 2013, 42(4):100-103.
[2] 王伟, 许新桥. 木本油料西康扁桃资源评价及产业化发展策略[J]. 中国油脂, 2016, 41(11):1-5. Wang W, Xu XQ. Resource evaluation and industrialization development strategy of woody oil plant Amygdalus[J]. China Oils and Fats, 2016, 41(11):1-5.
[3] 李倩, 权博文, 常虹, 周红兵, 白万富, 石松利. 扁桃属植物的化学成分及药理作用研究进展[J]. 中国药房, 2020, 31(21):2683-2688. Li Q, Quan BW, Chang H, Zhou HB, Bai WF, Shi SL. Research progress on chemical constituents and pharmacological effects of Amygdalus[J]. China Pharmacy, 2020, 31(21):2683-2688.
[4] 张善云. 用四川扁桃作普通扁桃的砧木[J]. 中国果树, 1983(3):53. [5] 张善云, 黄光志. 四川扁桃嫁接普通扁桃的试验[J]. 四川林业科技, 1983(3):53-54. [6] 梅立新, 刘文倩, 魏钰, 蒋宝. 中国扁桃资源与利用价值分析[J]. 西北林学院学报, 2014, 29(1):69-72. Mei LX, Liu WQ, Wei Y, Jiang B. Evaluation of the resources and development potential of Amygdalus spp. in China[J]. Journal of Northwest Forestry University, 2014, 29(1):69-72.
[7] 苏贵兴, 姚玉卿, 张善云, 黄光志. 四川扁桃的调查研究[J]. 中国果树, 1982(4):21-23. [8] 马松梅, 聂迎彬, 段霞, 余存生, 王荣学. 蒙古扁桃植物的潜在地理分布及居群保护优先性[J]. 生态学报, 2015, 35(9):2960-2966. Ma SM, Nie YB, Du X, Yu CS, Wang RX. The potential distribution and population protection priority of Amygdalus mongolica[J]. Acta Ecologica Sinica, 2015, 35(9):2960-2966.
[9] 褚建民, 李毅夫, 张雷, 李斌, 高明远, 等. 濒危物种长柄扁桃的潜在分布与保护策略[J].生物多样性, 2017, 25(8):799-806. Chu JM, Li YF, Zhang L, Li B, Gao MY, et al. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata[J]. Biodiver-sity Science, 2017, 25(8):799-806.
[10] 红雨, 邹林林, 朱清芳. 珍稀濒危植物蒙古扁桃群落结构特征[J]. 生态学杂志, 2010, 29(10):1907-1911. Hong Y, Zhou LL, Zhu QF. Community structure characteristics of endangered plant Prunus mongolica[J]. Chinese Journal of Ecology, 2010, 29(10):1907-1911.
[11] 段义忠, 王佳豪, 王驰, 王海涛, 杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析[J]. 生态学杂志, 2020, 39(7):2193-2204. Duan YZ, Wang JH, Wang C, Wang HT, Du ZY. Analysis on the potential suitable areas of four species of the subgen. Amygdalus in arid Northwest China under future climate change[J]. Chinese Journal of Ecology, 2020, 39(7):2193-2204.
[12] 郭改改, 封斌, 麻保林, 井赵斌, 张应龙, 郭春会. 不同区域长柄扁桃抗旱性的研究[J]. 植物科学学报, 2013, 31(4):360-369. Guo GG, Feng B, Ma BL, Jing ZB, Zhang YL, Guo CH. Studies on drought resistance of different regional Amygdalus pedunculata Pall.[J]. Plant Science Journal, 2013, 31(4):360-369.
[13] Wang JG, Zheng R, Bai SL, Guo XM, Liu M, Yan W. Mongolian almond (Prunus mongolica Maxim):The morpho-physiological, biochemical and transcriptomic response to drought stress[J]. PLoS One, 2015, 10(4):e0124442.
[14] 黄来明, 邵明安, 裴艳武, 张应龙. 沙地濒危植物长柄扁桃生物学特性与抗逆性及应用综述[J]. 土壤, 2019, 51(2):217-223. Huang LM, Shao MA, Pei YW, Zhang YL. Review on biological characteristics and abiotic stress tolerance mechanisms and applications of Amygdalus pedunculata[J]. Soils, 2019, 51(2):217-223.
[15] Chang H, Liu Q, Bai WF, Bai YC, Jia XY, et al. Protective effects of Amygdalus mongolica on rats with renal fibrosis based on serum metabolomics[J]. J Ethnopharmacol, 2020, 257:112858.
[16] 王进, 颜霞, 李军元, 谢全刚, 张勇, 等. 蒙古扁桃(Amygdalus mongolica)种子萌发及幼苗生长对胁迫的响应[J]. 中国沙漠, 2018, 38(1):140-148. Wang J, Yan X, Li JY, Xie QG,Zhang Y, et al. Response of the seed germination and seedling growth of Amygdalus mongolica to stresses[J]. Journal of Desert Research, 2018, 38(1):140-148.
[17] 张瑞琦, 王进鑫, 王秀青, 狄龙. 4种草本植物浸提液对长柄扁桃种子萌发及幼苗生长的影响[J]. 西北林学院学报, 2018, 33(5):94-99. Zhang RQ, Wang JX, Wang XQ, Di L. Effects of the water extract from four herbs on seed germination and seedling growth of Amygdalus pedunculata[J]. Journal of Northwest Forestry University, 2018, 33(5):94-99.
[18] 王子婷, 莫保儒. 甘肃省白龙江流域西康扁桃灌丛群落分布特征[J]. 甘肃林业科技, 2015, 40(4):5-9. Wang ZT, Mo BR. Study on distribution characteristics of Amygdalus tungutica shrub community at Bailongjiang Watersh in Gansu[J]. Journal of Gansu Forestry Science and Technology, 2015, 40(4):5-9.
[19] 宋鹏, 张庭端, 刘芙蓉, 王伟, 罗建勋, 贾晨. 川西地区西康扁桃优树选择技术与综合评价[J]. 四川林业科技, 2017, 38(2):79-84. Song P, Zhang TR, Liu FR, Wang W, Luo JX, Jia C. Superior variety selection and overall evaluations of Amygdalus tangutica in Western Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(2):79-84.
[20] 曾继娟, 朱强. 水分胁迫对3种扁桃的生长与耗水特征的影响[J]. 西北林学院学报, 2018, 33(4):145-152. Zeng JJ, Zhu Q. Effects of water stress on the growth and water consumption characteristics of three Amygdalus species[J]. Journal of Northwest Forestry University, 2018, 33(4):145-152.
[21] 刘国华, 马克明, 傅伯杰, 关文彬, 康永祥, 等. 岷江干旱河谷主要灌丛类型地上生物量研究[J]. 生态学报, 2003(9):1757-1764. Liu GH, Ma KP, Fu BJ, Guan WB, Kang YX, et al. Aboveground biomass of main shrubs in dry valley of Minjiang River[J]. Acta Ecologica Sinica, 2003(9):1757-1764.
[22] Chu JM, Yang HX, Lu Q, Zhang XY. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration[J]. AoB Plants, 2015, 7:plv063.
[23] 何其华, 何永华, 包维楷. 岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J]. 应用与环境生物学报, 2004, 10(1):68-74. He QH, He YH, Bao WK. Dynamics of soil water contents on south-facing slope of dry valley area in the upper reaches of the Minjiang River[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1):68-74.
[24] 庞学勇, 包维楷, 吴宁. 岷江上游干旱河谷气候特征及成因[J]. 长江流域资源与环境, 2008, 17(S1):46-53. Pang XY, Bao WK, Wu N. Reasons of dry valley climate characteristic and its formation reason in upstream of Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2008, 17(S1):46-53.
[25] 冶民生, 关文彬, 谭辉, 马克明, 刘国华, 汪西林. 岷江干旱河谷灌丛α多样性分析[J]. 生态学报, 2004, 24(6):1123-1130. Ye MS, Guan WB, Tan H, Ma KP, Liu GH, Wang XL. The α diversity of shrubs community in the arid valley of the Minjiang River[J]. Acta Ecologica Sinica, 2004, 24(6):1123-1130.
[26] 包维楷, 陈庆恒, 陈克明. 岷江上游干旱河谷植被恢复环境优化调控技术研究[J]. 应用生态学报, 1999(5):542-544. Bao WK, Chen QH, Chen KM. Environment control techniques for vegetation restoration in dry valley of upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 1999(5):542-544.
[27] 晏兆莉, 陈克明, 陈建中, 王春明. 岷江干旱河谷的生态特征与植被恢复研究[J]. 世界科技研究与发展, 2000(S1):36-38. Yan ZL, Chen KM, Chen JZ, Wang CM. Studies on ecological characteristics and reforestation in dry valley area of Minjiang River[J]. World Sci-Tech R & D, 2000(S1):36-38.
[28] 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6):533-548. Fang JY, Wang XP, Shen ZH, Tang ZR, He JS, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 17(6):533-548.
[29] 范建容, 杨超, 包维楷, 刘佳丽, 李炫. 西南地区干旱河谷分布范围及分区统计分析[J]. 山地学报, 2020, 38(2):303-313. Fan JR, Yang C, Bao WK, Liu JL, Li X. Distribution scope and district statistical analysis of dry valleys in Southwest China[J]. Mountain Research, 2020, 38(2):303-313.
[30] Martin D, Vazquez-Pique J, Carevic FS, Fernandez M, Alejano R. Trade-off between stem growth and acorn production in holm oak[J]. Trees, 2015, 29(3):825-834.
[31] 李清河, 辛智鸣, 高婷婷, 王赛宵, 徐军, 孙非. 荒漠植物白刺属4个物种的生殖分配比较[J]. 生态学报, 2012, 32(16):5054-5061. Li QH, Xin ZM, Gao TT, Wang SX, Xu J, Sun F. Reproductive allocation in four desert species of the genus Nitraria L.[J]. Acta Ecologica Sinica, 2012, 32(16):5054-5061.
[32] Tamaki I, Nomura K, Nomura R, Tate C, Fukaya S, et al. Survival, growth and reproduction of sprouted individuals of star magnolia two years after clearcutting[J]. J Forest Res, 2020, 26(1):26-31.
[33] 操国兴, 钟章成, 谢德体, 刘芸. 不同群落中川鄂连蕊茶的生殖分配与个体大小之间关系的探讨[J]. 植物生态学报, 2005, 29(3):261-266. Cao GX, Zhong ZC, Xie DT, Liu Y. The relationship between reproductive allocation, fruit set and individual size of Camellia rosthorniana in different communities[J]. Chinese Journal of Plant Ecology, 2005, 29(3):261-266.
[34] Norghauer JM, Newbery DM. Tree size and fecundity influence ballistic seed dispersal of two dominant mast-fruiting species in a tropical rain forest[J]. Forest Ecol Manag, 2015, 338:100-113.
[35] Bogdziewicz M, Szymkowiak J, Calama R, Crone EE, Espelta JM, et al. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals[J]. Ann Bot, 2020, 126(5):971-979.
[36] Minor DM, Kobe RK. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest[J]. Ecol Evol, 2019, 9(3):1458-1472.
[37] Mund M, Herbst M, Knohl A, Matthaus B, Schumacher J, et al. It is not just a ‘trade-off’ indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest[J]. New Phytol, 2020, 226(1):111-125.
[38] 殷东生, 沈海龙. 林木大年结实特征及其影响因素研究进展[J]. 生态学杂志, 2016, 35(2):542-550. Yin DS, Shen HL. Research review on the characteristics of mast seeding in forest trees and its influencing factors[J]. Acta Ecologica Sinica, 2016, 35(2):542-550.
[39] Nussbaumer A, Waldner P, Apuhtin V, Aytar F, Benham S, et al. Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe[J]. Forest Ecol Manag, 2018, 429:336-350.
[40] 杨锡福, 张洪茂, 张知彬. 植物大年结实及其与动物贮食行为之间的关系[J]. 生物多样性, 2020, 28(7):821-832. Yang XF, Zhang HM, Zhang ZB. Mast seeding and its relationship to animal hoarding behaviour[J]. Biodiversity Science, 2020, 28(7):821-832.
[41] Bogdziewicz M, Espelta JM, Munoz A, Aparicio JM, Bonal R. Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density[J]. Oecologia, 2018, 186(4):983-993.
[42] 罗永红, 闫兴富, 周立彪, 苗迎权, 张金峰. 种子特征和结实量对啮齿动物取食和扩散种子行为的影响[J]. 应用生态学报, 2018, 29(12):4181-4190. Luo YH, Yan XF, Zhou LB, Miao YQ, Zhang JF. Effects of seed traits and seed production on the seed predation and dispersal behavior of rodent[J]. Chinese Journal of Applied Ecology, 2018, 29(12):4181-4190.
[43] 黄财智, 张文辉, 邢忠利, 余碧云, 叶权平, 薛文艳. 间伐强度对黄桥林区辽东栎生殖构件的影响[J]. 应用生态学报, 2016, 27(12):3838-3844. Huang CZ, Zhang WH, Xing ZL, Yu BY, Ye QP, Xue WY. Effects of thinning intensities on reproductive modules of Quercus liaotungensis in Huanglong and Qiaoshan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2016, 27(12):3838-3844.
[44] Grime JP. Plant strategies and vegetation processes[J]. Biol Plant, 1979, 23(4):254-254.
-
期刊类型引用(5)
1. 赵兴鹏,王艳霞,陈刚,倪兆睿,贾鑫,虎巍,王咏梅. 扁桃属植物在祁连山浅山区的引种适应性和栽培表现. 农业与技术. 2025(02): 79-82 . 百度学术
2. 王铜林,柴春山,莫保儒,薛睿,林琳,李德丽. 西康扁桃种仁含油量及营养成分分析. 甘肃林业科技. 2024(01): 26-30+56 . 百度学术
3. 段春燕,王晓凌. 唐古特扁桃叶绿体基因组特征分析. 湖南农业大学学报(自然科学版). 2024(03): 27-34 . 百度学术
4. 黄兰鹰,杨育林,高鹏,严欣荣,尤继勇,张好,贺维,吴雨峰. 应用Landsat影像数据分析岷江上游植被覆盖度时空变化及地形分异特征. 东北林业大学学报. 2023(01): 54-60 . 百度学术
5. 柴春山,莫保儒,蔡国军,马驰,薛睿,李德丽,林琳. 甘肃迭部野生西康扁桃种仁油理化性质及脂肪酸组成分析. 中国粮油学报. 2023(06): 98-105 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 523
- HTML全文浏览量: 1
- PDF下载量: 348
- 被引次数: 7