Differences in photosynthetic responses to simulated heat wave in seedlings of two mangrove species from different provenances
-
摘要: 以来自中国广西(较低纬度)和日本冲绳(较高纬度)两个地理种群的耐冷秋茄(Kandelia obovata Sheue,H.Y.Liu&J.Yong)和耐热木榄(Bruguiera gymnorrhiza (L.) Savigny)为材料,测定其光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ)活性参数、叶黄素循环组分和叶绿素a、b的含量,并分析他们经高温处理后光合生理响应的差异。结果显示:高温处理使植物PSⅡ最大光化学潜能(Fv/Fm)显著降低,降低幅度为较低纬度种群<较高纬度种群、木榄幼苗<秋茄幼苗;P700氧化还原状态(Pm)降低,降低幅度为较低纬度种群<较高纬度种群;叶片非光化学猝灭(NPQ)升高,表现为较低纬度种群>较高纬度种群、木榄幼苗>秋茄幼苗。高温处理引起叶黄素库容量(V+A+Z)和脱环氧化状态(A+Z)/(V+A+Z)升高,表现为较低纬度种群>较高纬度种群;(A+Z)/(V+A+Z)与Fv/Fm负相关,而与NPQ正相关。常温恢复第2 d,高纬度种源秋茄幼苗Fv/Fm仍为0.69,表明其PSⅡ受到不可逆的损伤,而其余种源幼苗的Fv/Fm均恢复到正常水平,且所有种源幼苗仍保持较高的NPQ以及叶黄素脱环氧化比率,起光保护作用。与萨瓦纳和地中海型生境相比,红树林有最大的叶黄素库。研究结果表明,低纬度种群对高温胁迫具有较高的适应性,部分原因是叶黄素循环具有较强的光保护作用,物种及种源间存在耐冷和耐热性的权衡。Abstract: We analyzed the impact of two days of high-temperature treatment on the leaf photosystem properties of potted seedlings of two mangrove species, i.e., cold-tolerant Kandelia obovata Sheue, H. Y. Liu & J. Yong and heat-tolerant Bruguiera gymnorrhiza (L.) Savigny, from two geographical populations in Guangxi, China (lower latitude) and Okinawa, Japan (higher latitude). The xanthophyll cycle components and chlorophyll-a and -b contents were measured. The leaf photosystemⅠ(PSⅠ) and photosystemⅡ(PSⅡ) activities were measured using a Dual-PAM-100 system. Results showed that high temperature significantly reduced the maximum photochemical efficiency (Fv/Fm) of PSⅡ in both species. The Fv/Fm values showed less decrease in the lower latitude populations than in the higher latitude populations, and less decrease in B. gymnorrhiza than in K. obovata seedlings. The P700 oxidation-reduction state (Pm) showed less decrease in the lower than higher latitude populations. The leaf non-photochemical quenching (NPQ) showed a greater increase in the lower latitude populations than in the higher latitude populations. The xanthophyll pool size (V + A + Z) and de-epoxidation ratio (A + Z)/(V + A + Z) increased following heat treatment. A greater increase was observed in the lower latitude populations than in the higher latitude populations. In addition, the (A + Z)/(V + A + Z) ratio was negatively correlated with Fv/Fm, but positively correlated with NPQ. Compared with other hardy habitats, such as savannas and Mediterranean woodlands, mangroves had the largest xanthophyll pool size. On the second day of recovery, Fv/Fm was still at 0.69 in the high-latitude K. obovata seedlings, indicating irreversible photoinhibition of PSⅡ, while all seedlings maintained a higher de-epoxidation ratio and NPQ for photosystem protection. In conclusion, the lower latitude populations showed higher adaptability to heat stress, which was partly due to strong photoprotection through the xanthophyll cycle, and there was a tradeoff between cold- and heat-tolerance between species and populations. This study revealed a novel heat tolerance mechanism in mangrove species, which has implications for their physiological responses to future changing climate.
-
Keywords:
- Mangrove /
- Photosystems /
- High temperature stress /
- Xanthophyll cycle /
- Provenance
-
-
[1] Coumou D, Robinson A. Historic and future increase in the global land area affected by monthly heat extremes[J]. Environ Res Lett, 2013, 8(3):6-13.
[2] Seneviratne SI, Donat MG, Mueller B, Alexander LV. No pause in the increase of hot temperature extremes[J]. Nat Clim Change, 2014, 4:161-163.
[3] Buckley LB, Huey RB. Temperature extremes:geographic patterns, recent changes, and implications for organismal vulnerabilities[J]. Global Change Biol, 2016, 22(12):3829-3842.
[4] Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress:an overview of molecular responses in photosynthesis[J]. Photosynth Res, 2008, 98(1-3):541-550.
[5] Long SP, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature[J]. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:633-662.
[6] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Ann Rev Plant Physiol, 1980, 31:491-543.
[7] Buchner O, Stoll M, Karadar M, Kranner I, Neuner G. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants[J]. Plant Cell Environ, 2015, 38(4):812-826.
[8] Demmig B, Winter K, Kruger A, Czygan FC. Photoinhibition and zeaxanthin formation in intact leaves:a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiol, 1987, 84(2):218-224.
[9] Demmig-Adams B, Adams WW 3rd. Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation[J]. New Phytol, 2006, 172(1):11-21.
[10] Demmig-Adams B, Cohu CM, Muller O, Adams WW 3rd. Modulation of photosynthetic energy conversion efficiency in nature:from seconds to seasons[J]. Photosynth Res, 2012, 113(1-3):75-88.
[11] Yin Y, Li SM, Liao WQ, Lu QT, Wen XG, Lu CM. PhotosystemⅡ photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves[J]. J Plant Physiol, 2010, 167(12):959-966.
[12] Streb R, Aubert S, Bligny R. High temperature effects on light sensitivity in the two high mountain plant species Soldanella alpina (L.) and Rannunculus glacialis (L.)[J]. Plant Biology, 2003, 5(4):432-440.
[13] Dongsansuk A, Lütz C, Neuner G. Effects of temperature and irradiance on quantum yield of PSⅡ photochemistry and xanthophyll cycle in a tropical and a temperate species[J]. Photosynthetica, 2013, 51(1):13-21.
[14] Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, et al. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria:a severe ecosystem response, coincidental with an unusually extreme weather event[J]. Mar Freshwater Res, 2017, 68(10):1816-1829.
[15] Quisthoudt K, Schmitz N, Randin CF, Dahdouh-Guebas F, Robert EMR, Koedam N. Temperature variation among mangrove latitudinal range limits worldwide[J]. Trees, 2012, 26:1919-1931.
[16] Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico[J]. Biotropica, 2008, 40(4):449-456.
[17] Cook-Patton SC, Lehmann M, Parker JD. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge[J]. Funct Ecol, 2015, 29(10):1332-1340.
[18] 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4):435-440. Liao BW, Zhang QM. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4):435-440.
[19] Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynth Res, 2004, 79(2):209-218.
[20] Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235:819-828.
[21] Haldimann P, Feller U. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Plant Cell Environ, 2004, 27(9):1169-1183.
[22] Zhang JH, Huang WD, Liu YP, Pan QH. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses[J]. J Integr Plant Biol, 2005, 47(8):959-970.
[23] Cunningham SC, Read J. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia[J]. Tree Physiol, 2006, 26(11):1435-1443.
[24] Pšidová E, Živčák M, Stojnić S, Orlović S, Gömöry D, et al. Altitude of origin influences the responses of PSⅡ photochemistry to heat waves in European beech (Fagus sylvatica L.)[J]. Environ Exp Bot, 2018, 152:97-106.
[25] 陈鹭真, 郑文教, 杨盛昌, 王文卿, 张宜辉. 红树林耐寒性和向海性生态系列对气候变化响应的研究进展[J]. 厦门大学学报, 2017, 56(3):305-313. Chen LZ, Zheng WJ, Yang SC, Wang WQ, Zhang YH. Research progresses of mangrove cold-tolerant classes and seral classes, and their responses to climate change[J]. Journal of Xiamen University, 2017, 56(3):305-313.
[26] Offord CA. Pushed to the limit:consequences of climate change for the Araucariaceae:a relictual rain forest family[J]. Ann Bot, 2011, 108(2):347-357.
[27] 陈燕, 刘锴栋, 黎海利, 许方宏, 钟军弟, 成夏岚, 袁长春. 5种红树植物的叶片结构及其抗逆性比较[J]. 东北林业大学学报, 2014, 42(7):27-31. Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC. Leaf structures and stress resistance in five mangrove species[J]. Journal of Northeast Forestry University, 2014, 42(7):27-31.
[28] 李爱国, 屈霞, 李小科, 余筱南. 植物耐热性的研究进展[J]. 作物研究, 2007, 21(5):493-497. [29] Magney TS, Logan BA, Reblin JS, Boelman NT, Eitel JUH, et al. Xanthophyll cycle activity in two prominent arctic shrub species[J]. Arct Antarct Alp Res, 2018, 49(2):277-289.
-
期刊类型引用(2)
1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术
其他类型引用(5)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 7