Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions
-
摘要: 钙通透性阳离子通道蛋白(OSCA)在渗透胁迫感应中发挥重要的作用。本研究利用辣椒(Capsicum annuum L.)全基因组信息,鉴定出14个OSCA基因(CaOSCA),染色体定位及同源性分析表明,它们分别位于1、2、4、6、7、8、9、12号染色体上,亚细胞定位预测表明其编码产物均位于质膜上。系统进化树分析这些基因可分为4个组,分别命名为Ⅰ~Ⅳ,与拟南芥存在11对共线性基因。顺式作用元件预测显示CaOSCA基因能响应激素和非生物胁迫,表达分析显示多数CaOSCA基因能响应干旱、盐和低温胁迫。干旱胁迫24 h时,CaOSCA8和CaOSCA11相对表达量显著高于对照,分别上升14和13倍。Abstract: The calcium-permeable cation channel protein (OSCA) plays an important role in osmotic stress response. In this study, 14 OSCA family members were identified using whole-genome information of pepper (Capsicum annuum L.). Chromosomal localization and homology analysis showed that the OSCA family members were located on chromosomes 1, 2, 4, 6, 7, 8, 9, and 12, respectively. Subcellular localization prediction showed that they were all located on the plasma membrane. Phylogenetic tree analysis indicated that the CaOSCA gene family could be divided into four subfamilies, named Ⅰ-Ⅳ, and there were 11 collinear gene pairs with Arabidopsis. Cis-acting element prediction showed that the CaOSCA family genes may respond to hormone and abiotic stress. Furthermore, relative expression analysis of pepper showed that most CaOSCA genes respond to drought, salt, and low temperature stresses. Under drought stress for 24 h, the relative expression levels of CaOSCA8 and CaOSCA11 were significantly higher than those in the control, increasing by 14 and 13 times, respectively. This study provides new information for the OSCA gene family and provides a reference for subsequent study of OSCA in pepper.
-
Keywords:
- Capsicum annuum /
- OSCA /
- Family analysis /
- Abiotic stress
-
-
[1] Batistic O, Kudla J. Analysis of calcium signaling pathways in plants[J]. BBA-Gen Subjects, 2012, 1820(8):1283-1293.
[2] 闫芹芹. 拟南芥高渗诱导Ca2+通道蛋白OSCA1的表达, 结晶及晶体初步分析[J]. 南开大学学报(自然科学版), 2020, 53(5):101. Yan QQ. Expression crystallization and crystal analysis of Ca2+ channel protein OSCA1 induced by hyperosmotic in Arabidopsis thaliana[J]. Journal of Nankai University (Natural Science Edition), 2020, 53(5):101.
[3] Edel KH, Kudla J. Increasing complexity and versatility:how the calcium signaling toolkit was shaped during plant land colonization[J]. Cell Calcium, 2015,57(3):231-246.
[4] Gu X, Wang P, Liu Z, Wang L, Huang Z, et al. Genome-wide identification and expression analysis of the OSCA gene family in Pyrus bretschneideri[J]. Can J Plant, 2018, 98(4):918-929.
[5] Yuan F, Yang H, Xue Y, Kong D, Rui Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nat Commun, 2014, 514(7522):367-371.
[6] Hou C, Tian W, Kleist T, Garcia V, Bai F, et al. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes[J]. Cell Res, 2014, 24(5):632-645.
[7] Wang AX, Zhang KW, Zhang Y, Chen XL, Liu JY. Identification of tomato OSCA gene family and expression analysis under different stress conditions[J]. Journal of Northeast Agricultural University (English Edition), 2019, 50(1):22-31.
[8] Li JW, Yang JK, Jia BW, Sun MZ, Liu Y, et al. Evolution and expression analysis of OSCA gene family in soybean[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(5):589-599.
[9] Li YS, Wen ZH, Yuan F, Li YH, Wang F, et al. Genome-wide survey and expression analysis of the OSCA gene family in rice[J]. BMC Plant Biology, 2015, 15(1):1-13.
[10] Guo M, Liu JH, Lu JP, Zhai YF, Wang H, et al. Genome-wide analysis of the CaHsp20 gene family in peppercomprehensive sequence and expression profile analysis under heat stress[J]. Front Oncol, 2015, 6(806):12-16.
[11] Zhang Z, Zhu R, Ji X, Li HJ, Lü H, Zhang HY. Genome-wide characterization and expression analysis of the HD-ZIP gene family in response to salt stress in pepper[J]. Int J Genomics, 2020, 20(1):1-15.
[12] 张杰, 陈兴浩, 庞丁玮, 段安安, 李昕蔓, 等. 毛果杨OSCA基因家族的鉴定及其在盐胁迫下的表达分析[J].分子植物育种, 2021, 12(1):1-14. Zhang J, Chen XH, Pang DW, Duan AA, Li XM, et al. Identification of Populus tomentosa OSCA gene family and its expression analysis under salt stress[J]. Molecular Plant Breeding, 2021, 12(1):1-14.
[13] Arce-Rodríguez ML, Martínez O. Genome-wide identification and analysis of the MYB transcription factor gene family in chili pepper (Capsicum Spp)[J]. Int J Mol Sci, 2021, 22(5):2229.
[14] Lin CJ, Li JH, Li PH, Chen T. Ca2+ homeostasis differs between plant species with different cold-tolerance at 4℃ chilling[J]. J Integr Plant Biol,2000,42(4):358-366.
[15] 王傲雪, 张可为, 张瑶, 陈秀玲, 刘佳音. 番茄OSCA基因家族鉴定及不同胁迫条件下表达分析[J]. 东北农业大学学报, 2019, 50(1):22-31. Wang AX, Zhang KW, Zhang Y, Chen XL, Liu JY. Identification of tomato OSCA gene family and expression analysis under different stress conditions[J]. Journal of Northeast Agricultural University, 2019, 50(1):22-31.
[16] 胡灿, 刘峰, 王运生. 辣椒CaNRAMP基因家族的鉴定与表达分析[J]. 江苏农业科学, 2019, 47(10):69-74. Hu C, Liu F, Wang YS. Identification and expression analysis of CaNRAMP gene family in pepper[J]. Jiangsu Agricultural Science, 2019, 47(10):69-74.
[17] 魏兵强, 王兰兰, 张茹, 陈灵芝, 张少丽, 张建农. 辣椒TPS家族成员的鉴定与CaTPS1的表达分析[J]. 园艺学报, 2016, 43(8):1504-1512. Wei BQ, Wang LL, Zhang R, Chen LZ, Zhang SL, Zhang JN. Identification of CaTPS gene family and expression analysis of catps1 in hot pepper[J]. Hort Plant J, 2016, 43(8):1504-1512.
[18] 丁亚东, 舒黄英, 高崇伦, 郝园园, 成善汉, 等. 中国辣椒热激蛋白HSP70基因家族分析[J]. 植物科学学报, 2021, 39(2):152-162. Ding YD, Shu HY, Gao CL, Hao YY, Cheng SH, et al. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq[J]. Plant Science Journal, 2021, 39(2):152-162.
[19] Tian F, Yang DC, Meng YQ, Jin JP, Gao G. Plant RegMap:charting functional regulatory maps in plants[J]. Nucleic Acids Res, 2019, 48(1):1104-1113.
[20] 林欢, 段伟科, 周怡, 祝梦全, 王云鹏, 等. 辣椒CDPK基因家族的鉴定进化与表达分析[J]. 核农学报, 2021, 35(1):7-17. Lin H, Duan WK, Zhou Y, Zhu MQ, Wang YP, et al. Identification evolution and expression analysis of CDPK gene family in pepper[J]. Journal of Nuclear Agriculture, 2021, 35(1):7-17.
[21] Chen C, Chen H, Zhang Y, Thomas HR, Xia R. TBtools:an integrative tool kit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020,13(8):1194-1202.
[22] Lescot M, Déhais P, Thijs G, Kathleen M, Yves M, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.
[23] Batistic O, Kudla J. Analysis of calcium signaling pathways in plants[J]. BBA-Biomembranes, 2012, 1820(8):1283-1293.
[24] Yuan F, Yang H, Xue Y, Kong D, Ye R, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature, 2014, 514(7522):367.
[25] Li RC, Peng YZ, Xiao ML, Guo RW, Zhen HW, et al. Systematic Analysis of the Maize OSCA genes revealing ZmOSCA family members involved in osmotic stress and ZmOSCA2.4confers enhanced drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2020, 21(1):351.
[26] Yang X, Yan XU, Fang FY.Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum[J]. J Cotton Sci, 2019, 2(02):14-31.
[27] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Physiol Plant, 2013,147(1):15-27.
[28] Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, et al. Salt stress manifestation on plants mechanism of salt tolerance and potassium role in alleviating it:a review[J]. Zemdirbyste-Agriculture, 2016,103(2):229-238.
[29] Xue T, Wang D, Zhang S, Ehlting J, Ni F, et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis[J]. BMC Genom, 2008, 9(1):1-21.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: