Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche
-
摘要: 为确定澳洲坚果光壳种(Macadamia integrifolia Maiden&Betche)叶绿体基因组密码子偏好性形成的主要影响因素,本研究通过其叶绿体基因组的51条蛋白编码序列,系统分析其密码子的使用模式及其特征。密码子偏好性参数分析结果显示,叶绿体基因密码子3位碱基的GC含量次序为GC1 > GC2 > GC3;有效密码子数ENC均值为48.80(>阈值45),其密码子偏性较弱;GC3与ENC呈显著相关,影响其偏好性。中性绘图分析结果表明,GC12与GC3的相关系数和回归曲线斜率分别为0.186和0.265,两者相关性不显著。ENC-plot分析发现大部分基因接近于标准曲线,其ENC比值位于-0.05~0.05,与期望值差异较小。PR2-plot偏倚分析表明密码子第3位碱基的使用频率不均等,嘧啶T/C高于嘌呤A/G。RSCU分析发现29个高频密码子、19个高表达密码子及16个最优密码子中绝大多数偏好使用以A或U结尾。系统进化分析结果显示,澳洲坚果光壳种和三叶澳洲坚果(M.ternifolia F.Mueller)的亲缘关系最近。研究结果说明,作为主要因素的自然选择和碱基突变相对均衡地共同影响澳洲坚果光壳种叶绿体基因组较弱的密码子使用偏好性,且影响其偏好性的密码子第3位碱基偏好使用A或U。Abstract: Codon usage bias of 51 genes from the chloroplast genome of Macadamia integrifolia Maiden & Betche was analyzed to determine the main factors affecting the formation of codon bias. The GC content at different codon positions in the chloroplast genes was GC1 > GC2 > GC3, and GC3 was significantly correlated with effective number of codons (ENC) (mean value 48.80 > threshold 45), indicating that the third codon position had direct impact on weak codon bias in the chloroplast genome of M. integrifolia. Neutral-plot analysis showed that there was no significant correlation between GC12 and GC3, with a correlation coefficient and regression slope of 0.186 and 0.265, respectively. ENC-plot analysis showed that most genes were located around the standard curve, and their ENC ratios were distributed between -0.05 and 0.05, suggesting that the differences between actual and expected ENC were small. PR2-plot analysis revealed that the third codon position was biased, where pyrimidine T/C was used more frequently than purine A/G. Relative synonymous codon usage (RSCU) analysis showed that most of the 29 high-frequency codons, 19 high-expression codons, and 16 optimal codons preferentially ended with A or U. Phylogenetic analysis showed that the relationship between M. integrifolia and M. ternifolia was similar. These results suggest that natural selection and base mutation are the main factors influencing weak codon bias in the chloroplast genome of M. integrifolia, and the third codon base, as another influencing factor, prefers to use A or U.
-
-
[1] Xie DF, Yu Y, Deng YQ, Li J, Liu HY, et al. Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution[J]. Int J Mol Sci, 2018, 19(7):1847.
[2] Meucci S, Schulte L, Zimmermann HH, Stoof-Leichsenring KR, Epp L, et al. Holocene chloroplast genetic variation of shrubs (Alnus alnobetula, Betula nana, Salix sp.) at the siberian tundra-taiga ecotone inferred from modern chloroplast genome assembly and sedimentary ancient DNA analyses[J]. Ecology Evol, 2021, 11(5):2173-2193.
[3] Wang K, Cui Y, Wang Y, Gao Z, Liu T, et al. Chloroplast genetic engineering of a unicellular green alga Haematococcus pluvialis with expression of an antimicrobial peptide[J]. Mar Biotechnol, 2020, 22(4):572-580.
[4] Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S. New tools for chloroplast genetic enginee-ring allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii[J]. Appl Microbiol Biotechnol, 2016, 100(12):5467-5477.
[5] Zhang R, Zhang L, Wang W, Zhang Z, Du H, et al. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild Solanum species[J]. Int J Mol Sci, 2018, 19(10):3142.
[6] Wang Z, Xu B, Li B, Zhou Q, Wang G, et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species[J]. PeerJ, 2020, 8:e8251.
[7] Bhattacharyya D, Uddin A, Das S, Chakraborty S. Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae:Faboideae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2019, 30(4):664-673.
[8] Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species:codon usage of chloroplast genes in Oryza species[J], Planta, 2020, 252(4):67.
[9] Zhao F, Zhou Z, Dang Y, Na H, Adam C, et al. Genome-wide role of codon usage on transcription and identification of potential regulators[J]. Proc Natl Acad Sci USA, 2021, 118(6):e2022590118.
[10] Zhou Z, Dang Y, Zhou M, Li L, Yu CH, et al. Codon usage is an important determinant of gene expression le-vels largely through its effects on transcription[J]. Proc Natl Acad Sci USA, 2016, 113(41):e6117-e6125.
[11] Tian G, Li G, Liu Y, Liu Q, Wang Y, et al. Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat[J]. PLoS One, 2020, 15(11):e0242624.
[12] Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii[J]. Bioresour Technol, 2011, 102(3):2610-2616.
[13] Kwon KC, Chan HT, León IR, Williams-Carrier R, Barkan A, et al. Codon optimization to enhance expression yields insights into chloroplast translation[J]. Plant Physiol, 2016, 172(1):62-77.
[14] Liu H, Lu Y, Lan B, Xu JJ. Codon usage by chloroplast gene is bias in Hemiptelea davidii[J]. J Genet, 2020, 99:8.
[15] 刘慧, 王梦醒, 岳文杰, 邢光伟, 葛玲巧, 等. 糜子叶绿体基因组密码子使用偏性的分析[J]. 植物科学学报, 2017, 35(3):362-371. Liu H, Wang MX, Yue WJ, Xing GW, Ge LQ, et al. Analysis of codon usage in the chloroplast genome of Broomcorn millet (Panicum miliaceum L.)[J]. Plant Science Journal, 2017, 35(3):362-371.
[16] Li G, Zhang L, Xue P. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species[J]. Gene, 2021, 802:145866.
[17] Nock CJ, Baten A, Barkla BJ, Furtado A, Henry RJ, et al. Genome and transcriptome sequencing characteri-ses the gene space of Macadamia integrifolia (Protea-ceae)[J]. BMC Genomics, 2016, 17(1):937.
[18] Liu J, Niu YF, Ni SB, He XY, Shi C. Complete chloroplast genome of a subtropical fruit tree Macadamia ternifolia (Proteaceae)[J]. Mitochondrial DNA B Resour, 2017, 2(2):738-739.
[19] Liu J, Niu YF, Ni SB, He XY, Zheng C, et al. The whole chloroplast genome sequence of Macadamia tetraphylla (Proteaceae)[J]. Mitochondrial DNA B Resour, 2018, 3(2):1276-1277.
[20] Nock CJ, Baten A, King GJ. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae[J]. BMC Genomics, 2014, 15(S9):S13.
[21] Nock CJ, Hardner CM, Montenegro JD, Ahmad Termizi AA, Hayashi S, et al. Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing[J]. Front Plant Sci, 2019, 10:334.
[22] Duan H, Zhang Q, Wang C, Li F, Tian F, et al. Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints[J]. PeerJ, 2021, 9:e10787.
[23] Li G, Pan Z, Gao S, He Y, Xia Q, et al. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis[J]. Genes Genomics, 2019, 41(10):1173-1181.
[24] Bulmer M. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics, 1991, 129(3):897-907.
[25] 尚明照, 刘方, 华金平, 王坤波. 陆地棉叶绿体基因组密码子使用偏性的分析[J]. 中国农业科学, 2011, 44(2):245-253. Shang MZ, Liu F, Hua JP, Wang KB. Analysis on codon usage of chloroplast genome of Gossypium hirsutum[J]. Scientia Agricultura Sinica, 2011, 44(2):245-253.
[26] Tang D, Wei F, Cai Z, Wei Y, Khan A, et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth[J]. Dev Genes Evol, 2021, 231(1-2):1-9.
[27] Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, et al. Synonymous codon usage in chloroplast genome of Coffea arabica[J]. Bioinformation, 2012, 8(22):1096-1104.
[28] 杨祥燕, 蔡元保, 谭秦亮, 覃旭, 黄显雅, 等. 菠萝叶绿体基因组密码子偏好性分析[J]. 热带作物学报, 2022, 43(3):439-446. Yang XY, Cai YB, Tan QL, Qin Xu, Huang XY, et al. Analysis of codon usage bias in the chloroplast genome of Ananas comosus[J]. Chinese Journal of Tropical Crops, 2022, 43(3):439-446.
[29] Wang L, Roossinck MJ. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants[J]. Plant Mol Biol, 2006, 61(4-5):699-710.
[30] Quax TE, Claassens NJ, Söll D, Oost J. Codon bias as a means to fine-tune gene expression[J]. Mol Cell, 2015, 59(2):149-161.
[31] Qi YY, Xu WJ, Xing T, Zhao MM, Li NN, et al. Synonymous codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity[J]. Evol Bioinform Online, 2015, 11(1):65-77.
[32] Paul P, Malakar AK, Chakraborty S. Codon usage and amino acid usage influence genes expression level[J]. Genetica, 2018, 146(1):53-63.
-
期刊类型引用(3)
1. 莫秀模. 泥炭藓生物学特性及人工栽培关键技术. 种子科技. 2025(02): 69-71 . 百度学术
2. 王瑶欣,薛永军,袁莹,陈玲玲,杨艳平,孙越. 泥炭藓形态特征与栽培对其吸水功能的影响. 贵州农业科学. 2023(07): 79-86 . 百度学术
3. 杨林,何小燕,王莲辉,杨冰. 贵州省泥炭藓科种类资源及分布特征. 西部林业科学. 2023(04): 83-89+107 . 百度学术
其他类型引用(3)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 6