高级检索+

云南被子植物蔷薇分支的进化历史研究

杨入瑄, 周韩洁, 李嵘

杨入瑄, 周韩洁, 李嵘. 云南被子植物蔷薇分支的进化历史研究[J]. 植物科学学报, 2022, 40(3): 302-309. DOI: 10.11913/PSJ.2095-0837.2022.30302
引用本文: 杨入瑄, 周韩洁, 李嵘. 云南被子植物蔷薇分支的进化历史研究[J]. 植物科学学报, 2022, 40(3): 302-309. DOI: 10.11913/PSJ.2095-0837.2022.30302
Yang Ru-Xuan, Zhou Han-Jie, Li Rong. Evolutionary history of rosids in Yunnan angiosperms[J]. Plant Science Journal, 2022, 40(3): 302-309. DOI: 10.11913/PSJ.2095-0837.2022.30302
Citation: Yang Ru-Xuan, Zhou Han-Jie, Li Rong. Evolutionary history of rosids in Yunnan angiosperms[J]. Plant Science Journal, 2022, 40(3): 302-309. DOI: 10.11913/PSJ.2095-0837.2022.30302
杨入瑄, 周韩洁, 李嵘. 云南被子植物蔷薇分支的进化历史研究[J]. 植物科学学报, 2022, 40(3): 302-309. CSTR: 32231.14.PSJ.2095-0837.2022.30302
引用本文: 杨入瑄, 周韩洁, 李嵘. 云南被子植物蔷薇分支的进化历史研究[J]. 植物科学学报, 2022, 40(3): 302-309. CSTR: 32231.14.PSJ.2095-0837.2022.30302
Yang Ru-Xuan, Zhou Han-Jie, Li Rong. Evolutionary history of rosids in Yunnan angiosperms[J]. Plant Science Journal, 2022, 40(3): 302-309. CSTR: 32231.14.PSJ.2095-0837.2022.30302
Citation: Yang Ru-Xuan, Zhou Han-Jie, Li Rong. Evolutionary history of rosids in Yunnan angiosperms[J]. Plant Science Journal, 2022, 40(3): 302-309. CSTR: 32231.14.PSJ.2095-0837.2022.30302

云南被子植物蔷薇分支的进化历史研究

基金项目: 

国家自然科学基金(31770228);中国科学院西部之光“一带一路”项目;云南省基础研究专项重大项目(202101BC070002);中国科学院战略性先导科技A类专项资助(XDA26020203)。

详细信息
    作者简介:

    杨入瑄(1997-),女,硕士研究生,研究方向为植物分类与生物地理学(E-mail:yangruxuan@mail.kib.ac.cn)。

    通讯作者:

    李嵘,E-mail:lirong@mail.kib.ac.cn

  • 中图分类号: Q941+.2

Evolutionary history of rosids in Yunnan angiosperms

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31770228), Belt and Road Project of West Light Foundation of the Chinese Academy of Sciences, Major Program for Basic Research Project of Yunnan Province (202101BCO70002), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA26020203).

  • 摘要: 本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。
    Abstract: Combining data on the distribution and phylogenetic relationships of species of rosids in Yunnan angiosperms, we explored how taxonomic composition (including species, endemic species, and threatened species) and phylogenetic diversity varied across different geographic regions. Integrating the distribution of natural protected areas with taxonomic and phylogenetic composition data, we also identified key areas for biodiversity conservation. As expected, species richness was well correlated with phylogenetic diversity and taxonomic richness of endemic and threatened species among geographic regions. Southern and northwestern Yunnan contained the highest species richness and phylogenetic diversity. Using null model analyses, the standardized effect size of phylogenetic diversity was much lower than expected based on species richness of Yunnan. We suggest that southern, southeastern, and northwestern Yunnan should be a focus for biodiversity conservation as these areas may help maximize the protection of the evolutionary history and potential of Yunnan angiosperms.
  • [1]

    Lu LM, Mao LF, Yang T, Ye JF, Liu B, et al. Evolutionary history of the angiosperm flora of China[J]. Nature, 2018, 554(7691):234-238.

    [2]

    Ricklefs RE. Community diversity:relative roles of local and regional processes[J]. Science, 1987, 235(4785):167-171.

    [3]

    Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, et al. Preserving the evolutionary potential of floras in biodiversity hotspots[J]. Nature, 2007, 445(7129):757-760.

    [4]

    Meltofte H, Barry T, Berteaux D, Bültmann H, Christian-sen JS, et al. Arctic Biodiversity Assessment:Status and Trends in Arctic Biodiversity[M]. Akureyri:Conservation of Arctic Flora and Fauna, 2013:21-65, 311-353.

    [5]

    Lu MY, Gao LM, Li HT, He FL. The patterns of vascular plant discoveries in China[J]. Ecol Evol, 2021, 11(18):12378-12388.

    [6]

    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772):853-858.

    [7]

    Francis AP, Currie DJ. A globally consistent richness-climate relationship for angiosperms[J]. Am Nat, 2003, 161(4):523-536.

    [8]

    Zhang YZ, Qian LS, Spalink D, Sun L, Chen JG, et al. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation[J]. Plant Divers, 2021, 43(3):181-191.

    [9]

    Faith DP. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61(1):1-10.

    [10]

    Jetz W, Rahbek C, Colwell RK. The coincidence of rarity and richness and the potential signature of history in centres of endemism[J]. Ecol Lett, 2004, 7(12):1180-1191.

    [11]

    Zhang XX, Ye JF, Laffan SW, Mishler BD, Thornhill AH, et al. Spatial phylogenetics of the Chinese angiosperm flora provides insights into endemism and conservation[J]. J Integr Plant Biol, 2022, 64(1):105-117.

    [12]

    Huang JH, Huang JH, Liu CR, Zhang JL, Lu XH, et al. Diversity hotspots and conservation gaps for the Chinese endemic seed flora[J]. Biol Conserv, 2016, 198:104-112.

    [13]

    Rodrigues AS, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, et al. Effectiveness of the global protected area network in representing species diversity[J]. Nature, 2004, 428(6983):640-643.

    [14]

    Zhang YB, Ma KP. Geographic distribution patterns and status assessment of threatened plants in China[J]. Biodivers Conserv, 2008, 17(7):1783-1798.

    [15]

    Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, et al. Global hotspots of species richness are not congruent with endemism or threat[J]. Nature, 2005, 436(7053):1016-1019.

    [16]

    Hong DY, Stephen B. Plants of China:A Companion to the Flora of China[M]. Cambridge:Cambridge University Press, 2015:1-15.

    [17]

    The angiosperm phylogeny group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APGⅣ[STXFZ] [J]. Bot J Linn Soc, 2016, 181(1):1-20.

    [18] 吴征镒.云南植物志[M].北京:科学出版社, 1977-2006:261.
    [19] 杨一光.云南省综合自然区划[M].北京:高等教育出版社, 1991:1-17.
    [20] 王宇.云南山地气候[M].昆明:云南科技出版社, 2006:1-8.
    [21] 吴征镒,朱彦丞,姜汉桥.云南植被[M].北京:科学出版社, 1987:3-27.
    [22] 云南省生物物种名录(2016版)编委会.云南省生物物种名录[M].昆明:云南科技出版社, 2017:191-510.
    [23] 覃海宁,杨永,董仕勇,何强,贾渝,等.中国高等植物受威胁物种名录[J].生物多样性, 2017, 25(7):696-744.

    Qin HN, Yang Y, Dong SY, He Q, Jia Y, et al. Threa-tened species list of China's higher plants[J]. Biodiversity Science, 2017, 25(7):696-744.

    [24]

    Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314.

    [25]

    Jin Y, Qian HV. PhyloMaker:an R package that can ge-nerate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359.

    [26]

    Vetaas OR, Grytnes JA. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal[J]. Glob Ecol Biogeogr, 2002, 11(4):291-301.

    [27]

    Xu MZ, Yang LH, Kong HH, Wen F, Kang M. Congruent spatial patterns of species richness and phylogenetic diversity in karst flora:case study of Primulina (Gesneria-ceae)[J]. J Syst Evol, 2020, 59(2):251-261.

    [28]

    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, et al. Picante:R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26(11):1463-1464.

    [29]

    Esri. ArcGIS desktop 10.2[D/OL]. Environmental Systems Research Institute, 2013. https://desktop.arcgis.com/en/[BFY].

    [30] 李锡文.云南植物区系[J].云南植物研究, 1985(4):361-371.

    Li XW. Floristic study of Yunnan Province[J]. Acta Botanica Yunnanica, 1985(4):361-371.

    [31]

    Li R, Yue J. A phylogenetic perspective on the evolutio-nary processes of floristic assemblages within a biodiversity hotspot in eastern Asia[J]. J Syst Evol, 2020, 58(4):413-422.

    [32]

    Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora[J]. Science, 2020, 369(6503):578-581.

    [33]

    Yue JP, Sun H, Baum DA, Li JH, Al-Shehbaz IA, et al. Molecular phylogeny of Solms-aubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications[J]. J Syst Evol, 2009, 47(5):402-415.

    [34]

    Gao J, Liao PC, Huang BH, Yu T, Zhang YY, et al. Historical biogeography of Acer L.(Sapindaceae):genetic evidence for Out-of-Asia hypothesis with multiple disper-sals to North America and Europe[J]. Sci Rep, 2020, 10(1):1-10.

    [35]

    Azani N, Bruneau A, Wojciechowski MF, Zarre S. Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilio-noideae)[J]. Mol Phylogenet Evol, 2019, 137:210-221.

    [36]

    Polato NR, Gill BA, Shah AA, Gray MM, Casner KL, et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains[J]. Proc Natl Acad Sci USA, 2018, 115(49):12471-12476.

    [37]

    Wang MN, Duan L, Qiao Q, Wang ZF, Zimmer EA, et al. Phylogeography and conservation genetics of the rare and relict Bretschneidera sinensis (Akaniaceae)[J]. PLoS One, 2018, 13(1):e0189034.

    [38]

    Moonlight PW, Richardson JE, Tebbitt MC, Thomas DC, Hollands R, et al. Continental-scale diversification patterns in a megadiverse genus:the biogeography of Neotropical Begonia[J]. J Biogeogr, 2015, 42(6):1137-1149.

    [39]

    Lin Y, Wong WO, Shi G, Shen S, Li Z. Bilobate leaves of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the middle Miocene of Fujian Province, southeastern China and their biogeographic implications[J]. BMC Evol Biol, 2015, 15(1):1-18.

    [40]

    Zhu H. A biogeographical study on tropical flora of sou-thern China[J]. Ecol Evol, 2017, 7(23):10398-10408.

    [41]

    Qian H, Deng T, Jin Y, Mao L, Zhao D, et al. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China[J]. Proc Natl Acad Sci USA, 2019, 116(46):23192-23201.

    [42]

    Li XW, Walker D. The plant geography of Yunnan pro-vince, southwest China[J]. J Biogeogr, 1986, 13(5):367-397.

    [43] 朱华.云南植物区系的起源与演化[J].植物科学学报, 2018, 36(1):32-37.

    Zhu H. Origin and evolution of the flora of Yunnan[J]. Plant Science Journal, 2018, 36(1):32-37.

    [44]

    Deng M, Jiang XL, Hipp AL, Manos PS, Hahn M. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae):Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia[J]. Mol Phylogenet Evol, 2018, 119:170-181.

    [45]

    Chen G, Sun WB. The role of botanical gardens in scientific research, conservation, and citizen science[J]. Plant Divers, 2018, 40(4):181-188.

    [46]

    Tao LD, Han CY, Song K, Sun WB. A tree species with an extremely small population:recategorizing the critically endangered Acer yangbiense[J]. Oryx, 2020, 54(4):474-477.

    [47]

    Li CJ, Chen YL, Yang FM, Wang DS, Song K, et al. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species[J]. For Ecol Manage, 2020, 462:117993.

    [48]

    Pimm SL, Raven PH. The fate of the world's plants[J]. Trends Ecol Evol, 2017, 32(5):317-320.

    [49]

    Xia K, Zhou ZK, Chen WY, Sun WB. Rescuing the Sichou oak Quercus sichourensis in China[J]. Oryx, 2008, 42(1):15-16.

  • 期刊类型引用(2)

    1. 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应. 林业科学. 2020(02): 69-78 . 百度学术
    2. 温婷,张露,程子珊,朱博,陈伏生,易敏,谌梦云,李响. 鲜食枣‘麻姑1号’枣吊光合及叶绿素荧光特性. 经济林研究. 2020(04): 177-183+245 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  465
  • HTML全文浏览量:  3
  • PDF下载量:  268
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-03-06
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回