高级检索+

多维功能作图在胡杨幼苗生长QTL的应用

穆帅成, 祝绪礼, 叶梅霞, 邬荣领

穆帅成, 祝绪礼, 叶梅霞, 邬荣领. 多维功能作图在胡杨幼苗生长QTL的应用[J]. 植物科学学报, 2022, 40(3): 365-377. DOI: 10.11913/PSJ.2095-0837.2022.30365
引用本文: 穆帅成, 祝绪礼, 叶梅霞, 邬荣领. 多维功能作图在胡杨幼苗生长QTL的应用[J]. 植物科学学报, 2022, 40(3): 365-377. DOI: 10.11913/PSJ.2095-0837.2022.30365
Mu Shuai-Cheng, Zhu Xu-Li, Ye Mei-Xia, Wu Rong-Ling. Application of multi-trait functional mapping of QTL in Populus euphratica Oliv. seedlings[J]. Plant Science Journal, 2022, 40(3): 365-377. DOI: 10.11913/PSJ.2095-0837.2022.30365
Citation: Mu Shuai-Cheng, Zhu Xu-Li, Ye Mei-Xia, Wu Rong-Ling. Application of multi-trait functional mapping of QTL in Populus euphratica Oliv. seedlings[J]. Plant Science Journal, 2022, 40(3): 365-377. DOI: 10.11913/PSJ.2095-0837.2022.30365
穆帅成, 祝绪礼, 叶梅霞, 邬荣领. 多维功能作图在胡杨幼苗生长QTL的应用[J]. 植物科学学报, 2022, 40(3): 365-377. CSTR: 32231.14.PSJ.2095-0837.2022.30365
引用本文: 穆帅成, 祝绪礼, 叶梅霞, 邬荣领. 多维功能作图在胡杨幼苗生长QTL的应用[J]. 植物科学学报, 2022, 40(3): 365-377. CSTR: 32231.14.PSJ.2095-0837.2022.30365
Mu Shuai-Cheng, Zhu Xu-Li, Ye Mei-Xia, Wu Rong-Ling. Application of multi-trait functional mapping of QTL in Populus euphratica Oliv. seedlings[J]. Plant Science Journal, 2022, 40(3): 365-377. CSTR: 32231.14.PSJ.2095-0837.2022.30365
Citation: Mu Shuai-Cheng, Zhu Xu-Li, Ye Mei-Xia, Wu Rong-Ling. Application of multi-trait functional mapping of QTL in Populus euphratica Oliv. seedlings[J]. Plant Science Journal, 2022, 40(3): 365-377. CSTR: 32231.14.PSJ.2095-0837.2022.30365

多维功能作图在胡杨幼苗生长QTL的应用

基金项目: 

国家自然科学基金(32071796);中国博士后科学基金(2019M660496);北京林业大学科技创新计划(BLX201912)。

详细信息
    作者简介:

    穆帅成(1997-),男,硕士研究生,研究方向为系统生物学(E-mail:mushuaicheng@bjfu.edu.cn)。

    通讯作者:

    邬荣领,E-mail:rwu@phs.psu.edu

  • 中图分类号: Q-3

Application of multi-trait functional mapping of QTL in Populus euphratica Oliv. seedlings

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (32071796), China Postdoctoral Science Foundation Funded Project (2019M660496), and Science and Technology Innovation Program of Beijing Forestry University (BLX201912).

  • 摘要: 功能作图框架能够表征复杂动态性状背后的数量性状位点(Quantitative trait locus, QTL)或核苷酸。此前,功能作图广泛应用于单个性状或两个性状的QTL定位当中,多个相关性状功能作图的研究相对匮乏。本研究通过对SAD(Structured antedependence)模型进一步推导,得到在多个性状时用于拟合时间相关协方差矩阵的结构化模型,并使用胡杨(Populus euphratica Oliv.)340个F1代群体的4个生长相关性状以及模拟实验对多维功能作图模型进行测试。结果显示,共定位出173个显著位点,分布于除4、9、10、15、16以外的染色体。功能注释涉及参与叶绿体早期发育、生长素横向运输、提高植物非生物胁迫耐受性以及作为跨膜运输系统开关等生物学过程的32个基因。
    Abstract: Functional mapping frameworks can characterize quantitative trait loci (QTL) or nucleotides underlying complex dynamic traits. Functional mapping has been widely used in QTL mapping of a single trait or two traits, but research on multiple correlated traits remains relatively scarce. In this study, the structured antedependence (SAD) model was further derived and used to fit time-dependent covariance matrices for multiple traits. Four growth related traits of 340 Populus euphratica Oliv. F1 populations as well as simulation experiments were used to test this multi-trait functional mapping model. In total, 173 significant loci were located on the chromosomes, except for 4, 9, 10, 15, and 16. Functional annotation identified 32 genes involved in early chloroplast development, lateral auxin transport, abiotic stress tolerance, and transmembrane transport system switching.
  • [1] 郭艳芳,苏志方,叶梅霞,桑蒙蒙.胡杨幼苗生长的QTL功能定位[J].分子植物育种, 2019, 17(17):5726-5734.

    Guo YF, Su ZF, Ye MX, Sang MM. Functional mapping of seedling growth for Populus euphratica[J]. Molecular Plant Breeding, 2019, 17(17):5726-5734.

    [2]

    Liang HZ, Yu YL, Yang HQ, Xu LJ, Dong W, et al. Inhe-ritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theor Appl Genet, 2014, 127(10):2127-2137.

    [3]

    Hund A, Reimer R, Messmer R. A consensus map of QTLs controlling the root length of maize[J]. Plant Soil, 2011, 344(1):143-158.

    [4]

    Ayalew H, Liu H, Börner A, Kobiljski B, Liu C, et al. Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat[J]. Front Plant Sci, 2018, 9:1759.

    [5]

    Sun CY, Yang YM, Jia L, Liu XQ, Xu HQ, et al. QTL mapping of the genetic basis of stem diameter in soybean[J]. Planta, 2021, 253(5):1-12.

    [6]

    Zhu X, Feng T, Tayo BO, Liang J, Young JH, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension[J]. Am J Hum Genet, 2015, 96(1):21-36.

    [7]

    Cao J, Wang L, Huang Z, Gai J, Wu RL. Functional mapping of multiple dynamic traits[J]. J Agr Biol Envir St, 2017, 22(1):60-75.

    [8]

    Alam MJ, Hossain MR, Islam SS, Mollah MN. Regression based fast multi-trait genome-wide QTL analysis[J]. J Bioinf Comput Biol, 2021, 19(1):2050044.

    [9]

    Kemper KE, Reich CM, Bowman PJ, Vander Jagt CJ, Chamberlain AJ, et al. Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions[J]. Genet Sel Evol, 2015, 47(1):29-45.

    [10]

    Kemper KE, Bowman PJ, Hayes BJ, Visscher PM, Goddard ME. A multi-trait Bayesian method for mapping QTL and genomic prediction[J]. Genet Sel Evol, 2018, 50(1):10-22.

    [11]

    Ma CX, Casella G, Wu RL. Functional mapping of quantitative trait loci underlying the character process:a theore-tical framework[J]. Genetics, 2002, 161(4):1751-1762.

    [12]

    Jaffrézic F, Thompson R, Hill WG. Structured antedependence models for genetic analysis of repeated measures on multiple quantitative traits[J]. Genet Res, 2003, 82(1):55-65.

    [13]

    Zhao W, Hou W, Littell RC, Wu RL. Structured antedependence models for functional mapping of multiple longitudinal traits[J]. Stat Appl Genet Mol Biol, 2005, 4:33.

    [14]

    Wang Q, Gan JW, Wei K, Berceli SA, Gragnoli C, et al. A unified mapping framework of multifaceted pharmacodynamic responses to hypertension interventions[J]. Drug Discov Today, 2019, 24(3):883-889.

    [15]

    Jiang LB, Shi C, Ye MX, Xi F, Cao YG, et al. A computational-experimental framework for mapping plant coexistence[J]. Methods Ecol Evol, 2018, 9(5):1335-1352.

    [16]

    Liu Y, Li X, Chen G, Li M, Liu M, et al. Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages[J]. PLoS One, 2015, 10(9):e137701.

    [17]

    Zhang MM, Bo WH, Xu F, Li H, Ye MX, et al. The gene-tic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica[J]. Plant J, 2017, 90(5):918-928.

    [18]

    Wang HJ, Ye MX, Fu YR, Dong A, Zhang MM, et al. Modeling genome-wide by environment interactions through omnigenic interactome networks[J]. Cell Rep, 2021, 35(6):109114.

    [19]

    Burgess SS, Bleby TM. Redistribution of soil water by lateral roots mediated by stem tissues[J]. J Exp Bot, 2006, 57(12):3283-3291.

    [20]

    Pérez-Pérez JM, Esteve-Bruna D, González-Bayón R, Kangasjärvi S, Caldana C, et al. Functional redundancy and divergence within the Arabidopsis RETICULATA-RELATED gene family[J]. Plant Physiol, 2013, 162(2):589-603.

    [21]

    Küchler M, Decker S, Hörmann F, Soll J, Heins L. Protein import into chloroplasts involves redox-regulated proteins[J]. EMBO J, 2002, 21(22):6136-6145.

    [22]

    Lamberti G, Gügel IL, Meurer J, Soll J, Schwenkert S. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis[J]. Plant Physiol, 2011, 157(1):70-85.

    [23]

    Martin T, Sharma R, Sippel C, Waegemann K, Soll J, et al. A protein kinase family in Arabidopsis phosphory-lates chloroplast precursor proteins[J]. J Biol Chem, 2006, 281(52):40216-40223.

    [24]

    Friml J, Wis[DD (-1*3] [HT6]'niewska J, Benková E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis[J]. Nature, 2002, 415(6873):806-809.

    [25]

    Humphrey TV, Haasen KE, Aldea-Brydges MG, Sun H, Zayed Y, et al. PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana[J]. J Exp Bot, 2015, 66(1):71-83.

    [26]

    Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, et al. Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-Vacuole trafficking and plant growth in Arabidopsis[J]. Plant Cell, 2014, 26(5):2080-2097.

    [27]

    Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA[J]. RNA, 2011, 17(12):2165-2176.

    [28]

    Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, et al. Identification of genes required for embryo deve-lopment in Arabidopsis[J]. Plant Physiol, 2004, 135(3):1206-1220.

    [29]

    Chen H, Zou W, Zhao J. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis[J]. J Exp Bot, 2015, 66(7):2079-2091.

    [30]

    Wang P, Liu J, Liu B, Feng D, Da Q, et al. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystemⅡ[STXFZ] in Arabidopsis[J]. Plant Physiol, 2013, 163(4):1710-1728.

    [31]

    Queval G, Neukermans J, Vanderauwera S, VAN Breusegem F, Noctor G. Day length is a key regulator of transcriptomic responses to both co2 and h2o2 in Arabidopsis[J]. Plant Cell Environ, 2012, 35(2):374-387.

    [32]

    Qiu XM, Sun YY, Ye XY, Li ZG. Signaling role of glutamate in plants[J]. Front Plant Sci, 2020, 10:1743.

    [33]

    Barkan A, Small I. Pentatricopeptide repeat proteins in plants[J]. Annu Rev Plant Biol, 2014, 65:415-442.

    [34]

    Xu Y, Li P, Yang Z, Xu C. Genetic mapping of quantitative trait loci in crops[J]. Crop J, 2017, 5(2):175-184.

    [35]

    Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci[J]. Genetics, 1995, 140(3):1111-1127.

    [36]

    Tanaka H, Dhonukshe P, Brewer PB, Friml J. Spatiotemporal asymmetric auxin distribution:a means to coordinate plant development[J]. Cell Mol Life Sci, 2006, 63(23):2738-2754.

    [37]

    Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, et al. Diffe-rential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells[J]. Plant Physiol, 2010, 153(3):1046-1061.

    [38]

    Hu Z, Xu F, Guan L, Qian P, Liu Y, et al. The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis[J]. J Exp Bot, 2014, 65(4):1111-1123.

    [39]

    Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, et al. Analysis of the Arabidopsis O-acetylserine (thiol)-lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis[J]. Plant cell, 2008, 20(1):168-185.

    [40]

    Bermúdez MA, Páez-Ochoa MA, Gotor C, Romero LC. Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control[J]. Plant cell, 2010, 22(2):403-416.

    [41]

    Bermúdez MÁ, Galmés J, Moreno I, Mullineaux PM, Gotor C, et al. Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen[J]. Plant Physiol, 2012, 160(1):274-288.

    [42]

    Mittler R, Kim Y, Song L, Coutu J, Coutu A, et al. Gain-and loss-of-function mutations in[STXFX]Zat10[STXFZ] enhance the tole-rance of plants to abiotic stress[J]. FEBS Lett, 2006, 580(28-29):6537-6542.

    [43]

    Camera SL, Balagué C, Göbel C, Geoffroy P, Legrand M, et al. The Arabidopsis patatin-like protein 2(PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens[J]. Mol Plant Microbe in, 2009, 22(4):469-481.

    [44]

    Van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, et al. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA[J]. Nucleic Acids Res, 2003, 31(14):4247-4255.

    [45]

    Winicov I. Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J]. Planta, 2000, 210(3):416-422.

    [46]

    Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis[J]. Plant cell, 2007, 19(5):1665-1681.

    [47]

    Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, et al. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants[J]. Plant Cell Physiol, 2012, 53(10):1696-1706.

    [48]

    Haas TJ, Sliwinski MK, Martínez DE, Preuss M, Ebine K, et al. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5[J]. Plant cell, 2007, 19(4):1295-1312.

    [49]

    Voiniciuc C, Engle KA, Günl M, Dieluweit S, Schmidt MH, et al. Identification of key enzymes for pectin synthesis in seed mucilage[J]. Plant Physiol, 2018, 178(3):1045-1064.

    [50]

    Chen CX, Jiang LB, Fu G, Wang M, Wang Y, et al. An omnidirectional visualization model of personalized gene regulatory networks[J]. NPJ Syst Biol Appl, 2019, 5(1):38.

  • 期刊类型引用(1)

    1. 苏永峰,刘俐君,马红喜,袁引燕,张德恩,鲁晓燕. 基于转录组测序筛选新疆野苹果组培苗应答冻害谷胱甘肽代谢相关的基因. 果树学报. 2023(05): 829-840 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  307
  • HTML全文浏览量:  1
  • PDF下载量:  216
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-02-21
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回