高级检索+

三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘

钱程程, 赵历强, 杨亚湉, 韩邦兴, 吴家文, 欧金梅

钱程程, 赵历强, 杨亚湉, 韩邦兴, 吴家文, 欧金梅. 三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘[J]. 植物科学学报, 2022, 40(3): 378-389. DOI: 10.11913/PSJ.2095-0837.2022.30378
引用本文: 钱程程, 赵历强, 杨亚湉, 韩邦兴, 吴家文, 欧金梅. 三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘[J]. 植物科学学报, 2022, 40(3): 378-389. DOI: 10.11913/PSJ.2095-0837.2022.30378
Qian Cheng-Cheng, Zhao Li-Qiang, Yang Ya-Tian, Han Bang-Xing, Wu Jia-Wen, Ou Jin-Mei. Analysis of the transcriptome and discovery of key enzyme genes of the triterpenoid saponin biosynthesis pathway in Akebia trifoliata (Thunb.) Koidz.[J]. Plant Science Journal, 2022, 40(3): 378-389. DOI: 10.11913/PSJ.2095-0837.2022.30378
Citation: Qian Cheng-Cheng, Zhao Li-Qiang, Yang Ya-Tian, Han Bang-Xing, Wu Jia-Wen, Ou Jin-Mei. Analysis of the transcriptome and discovery of key enzyme genes of the triterpenoid saponin biosynthesis pathway in Akebia trifoliata (Thunb.) Koidz.[J]. Plant Science Journal, 2022, 40(3): 378-389. DOI: 10.11913/PSJ.2095-0837.2022.30378
钱程程, 赵历强, 杨亚湉, 韩邦兴, 吴家文, 欧金梅. 三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘[J]. 植物科学学报, 2022, 40(3): 378-389. CSTR: 32231.14.PSJ.2095-0837.2022.30378
引用本文: 钱程程, 赵历强, 杨亚湉, 韩邦兴, 吴家文, 欧金梅. 三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘[J]. 植物科学学报, 2022, 40(3): 378-389. CSTR: 32231.14.PSJ.2095-0837.2022.30378
Qian Cheng-Cheng, Zhao Li-Qiang, Yang Ya-Tian, Han Bang-Xing, Wu Jia-Wen, Ou Jin-Mei. Analysis of the transcriptome and discovery of key enzyme genes of the triterpenoid saponin biosynthesis pathway in Akebia trifoliata (Thunb.) Koidz.[J]. Plant Science Journal, 2022, 40(3): 378-389. CSTR: 32231.14.PSJ.2095-0837.2022.30378
Citation: Qian Cheng-Cheng, Zhao Li-Qiang, Yang Ya-Tian, Han Bang-Xing, Wu Jia-Wen, Ou Jin-Mei. Analysis of the transcriptome and discovery of key enzyme genes of the triterpenoid saponin biosynthesis pathway in Akebia trifoliata (Thunb.) Koidz.[J]. Plant Science Journal, 2022, 40(3): 378-389. CSTR: 32231.14.PSJ.2095-0837.2022.30378

三叶木通转录组分析及三萜皂苷生物合成途径关键酶基因的发掘

基金项目: 

安徽中医药大学人才项目(2021rcyb011);中央财政林业科技推广示范资金项目(Z175070050002);安徽高校自然科学研究项目(KJ2019A0479)。

详细信息
    作者简介:

    钱程程(1997-),女,硕士研究生,研究方向为中药成分与资源(E-mail:1550363326@qq.com)。

    通讯作者:

    韩邦兴,E-mail:hanbx1978@sina.com

    欧金梅,E-mail:toojm9319@163.com

  • 中图分类号: Q943.2

Analysis of the transcriptome and discovery of key enzyme genes of the triterpenoid saponin biosynthesis pathway in Akebia trifoliata (Thunb.) Koidz.

Funds: 

This work was supported by grants from the Talent Project of Anhui University of Chinese Medicine (2021rcyb011), Demonstration Funds for the Promotion of Forestry Science and Technology from the Central Finance (Z175070050002), and Natural Science Foundation of Education Department of Anhui Province, China (KJ2019A0479)。

  • 摘要: 为了解三叶木通(Akebia trifoliata(Thunb.)Koidz.)的三萜皂苷合成途径及其关键酶,本研究对其花、叶、根、茎进行转录组测序,组装获得了57.25 Gb数据,含140 859个unigenes,序列平均长度为1350 bp。KEGG代谢通路富集结果显示,517个unigenes参与三萜皂苷合成相关的3条代谢途径,其中415个unigenes编码三萜皂苷生物合成途径的19个关键酶。对三萜皂苷生物合成过程中的关键酶角鲨烯环氧酶(SE)进行序列分析和同源建模,发现其具有保守的底物结合结构域。将三叶木通茎与花、叶、根的基因表达水平进行比较,发现茎与根相比较其上调基因数目最多,其中295个差异表达基因(DEGs)与三萜皂苷生物合成途径相关。
    Abstract: To understand the biosynthesis pathway and key enzymes of triterpenoid saponins in Akebia trifoliata (Thunb.) Koidz., transcriptome sequencing was performed on flowers, leaves, roots, and stems using the BGI Illumina HiSeq sequencing platform. After assembly, we obtained 57.25 Gb of data, including 140 859 unigenes with an average sequence length of 1350 bp. KEGG pathway enrichment analysis identified 517 unigenes involved in three metabolic pathways related to triterpenoid saponin biosynthesis, of which 415 unigenes encoded 19 key enzymes of the triterpenoid saponin biosynthesis pathway. Sequence analysis and homology modeling of squalene epoxide (SE), a key enzyme of triterpenoid saponin biosynthesis, revealed a conserved substrate-binding domain. Comparing gene expression levels in the stem, flower, leaf, and root of Akebia trifoliata showed that up-regulated genes were the richest between the stem and root, including 295 differentially expressed genes (DEGs) related to the triterpenoid saponin biosynthesis pathway.
  • [1] 国家药典委员会.中华人民共和国药典2015年版一部[S].北京:中国医药科技出版社, 2015:306.
    [2] 柳岳超,李洪亮,曾小华,汪选斌.三叶木通藤茎的化学成分和药理作用研究进展[J].上海中医药大学学报, 2020, 34(3):99-106.

    Liu YC, Li HL, Zeng XH, Wang XB. Research progress on chemical components and pharmacological effects of Akebia trifoliata (Thunb.) Koidz.stem[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2020, 34(3):99-106.

    [3] 周莉,李琛,曹风军,李洪亮,汪选斌.抗癌中药预知子/燕覆:本草变迁与资源分布[J].中医药临床杂志, 2019, 31(5):799-803.

    Zhou L, Li C, Cao FJ, Li HL, Wang XB. Anti-cancer Chinese medicine-Akebiae fructus or Yanfu:the historical nomenclature and the distribution across China[J]. Clinical Journal of Traditional Chinese Medicine, 2019, 31(5):799-803.

    [4] 陈文成,王纯,陈涛,胡卫,曾建红.基于网络药理学探讨预知子治疗肝癌的作用机制[J].华中科技大学学报(医学版), 2021, 50(4):471-477.

    Chen WC, Wang C, Chen T, Hu W, Zeng JH. Mechanism of action of Fructus akebiae in the treatment of hepatocarcinoma:a network pharmacology analysis[J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2021, 50(4):471-477.

    [5] 杨玉宁,陈松树,高尔刚,李园园,潘秀珍,等.基于主成分分析的木通属植物果实品质评价[J].食品与发酵工业, 2021, 47(9):191-200.

    Yang YN, Chen SS, Gao EG, Li YY, Pan XZ, et al. Fruit quality evaluation of Akebia Decne based on principal component analysis[J]. Food and Fermentation Industries, 2021,47(9):191-200.

    [6] 郭艳玲.三叶木通化学成分及抗氧化活性实验研究[J].社区医学杂志, 2017, 15(17):84-86.

    Guo YL. Experimental study on chemical constituents and antioxidant activity of Akebia trifoliata[J]. Journal of Community Medicine, 2017, 15(17):84-86.

    [7] 张铮,冯航,王喆之.三叶木通藤茎中三萜皂苷类成分积累动态的研究[J].中药材, 2014, 37(7):1130-1133.

    Zhang Z, Feng H, Wang ZZ. Accumulation dynamic of tri-terpenoid saponins in Akebia trifoliata stem[J]. Journal of Chinese Medicinal Materials, 2014, 37(7):1130-1133.

    [8]

    Maciąg D, Dobrowolska E, Sharafan M, Ekiert H, Tomczyk M, Szopa A. Akebia quinata and Akebia trifoliata-a review of phytochemical composition, ethnopharmacological approaches and biological studies[J]. Journal of Ethnopharmacology, 2021, 280:114486.

    [9] 叶潇,刘晓谦,高慧敏,冯伟红,杨立新,等.以木通皂苷为例探讨中药中总三萜皂苷含量测定方法[J].中国中药杂志, 2019, 44(14):3087-3093.

    Ye X, Liu XQ, Gao HM, Feng WH, Yang LX, et al. Study on assay strategy of total tritepenoid saponins in traditional Chinese medicines using total saponins from Akebiae Caulis as an example[J]. China Journal of Chinese Materia Medica, 2019, 44(14):3087-3093.

    [10] 程艳刚,荆然,谭金燕,李慧峰,孔祥鹏,裴妙荣.齐墩果酸及其衍生物抗肿瘤作用机制研究进展[J].辽宁中医药大学学报, 2016, 18(11):210-213.

    Cheng YG, Jing R, Tan JY, Li HF, Kong XP, Pei MR. Advances in anti-tumor mechanism of oleanolic acid and its derivatives[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2016, 18(11):210-213.

    [11] 唐初,陈玉,柏舜,杨光忠.齐墩果酸的结构修饰与生物活性研究进展[J].有机化学, 2013, 33(1):46-65.

    Tang C, Chen Y, Bai S, Yang GZ. Advances in the study of structural modification and biological activities of olea-nolic acid[J]. Chinese Journal of Organic Chemistry, 2013, 33(1):46-65.

    [12]

    Newman JD, Chappll J. Isoprenoid biosynthesis in plant:carbon partitioning within the cytopl-asmic pathway[J]. Crit Rev Biochem Mol Biol, 1999, 34(2):95-106.

    [13]

    Choi D, Ward L, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elieitorarechidonic acid[J]. Plant Cell, 1992, 4(10):1333-1344.

    [14] 徐圆圆,陈仲,贾黎明,翁学煌.植物三萜皂苷生物合成途径及调控机制研究进展[J].中国科学:生命科学, 2021, 51(5):525-555.

    Xu YY, Chen Z, Jia LM, Weng XH. Advances in understanding of the biosynthetic pathway and regulatory mecha-nism of triterpenoid saponins in plants[J]. Scientia Sinica Vitae, 2021, 51(5):525-555.

    [15] 许晓双,张福生,秦雪梅.三萜皂苷生物合成途径及关键酶的研究进展[J].世界科学技术-中医药现代化, 2014, 16(11):2440-2448.

    Xu XS, Zhang FS, Qin XM. Research advances on triterpenoid saponins biosynthesis and its key enzymes[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2014, 16(11):2440-2448.

    [16] 张艳敬,候志芳,梁韶,王晗,宋娟,王英平.人参属药用植物三萜皂苷合成途径关键酶的研究进展[J].特产研究, 2016, 38(2):53-57.

    Zhang YJ, Hou ZF, Liang S, Wang H, Song J, Wang YP. The research progress of key enzymes involved in triterpene saponin biosynthesis in Panax genus plants[J]. Special Wild Economic Animal and Plant Research, 2016, 38(2):53-57.

    [17] 魏一丁,熊超,张天缘,高翰,尹青岗,等.基于转录组数据对七叶树中三萜皂苷合成途径的研究[J].中国中药杂志, 2019,44(6):1135-1144.

    Wei YD, Xiong C, Zhang TY, Gao H, Yin QG, et al. Synthesis of triterpenoid saponins from Aesculus chinensis based on transcriptome data[J]. China Journal of Chinese Materia Medica, 2019, 44(6):1135-1144.

    [18] 李彤,李剑超,王晨,曲雪洁,戚文涛,刘长利.药用植物鲨烯环氧酶基因研究进展[J].中国现代中药, 2021, 23(10):1837-1841.

    Li T, Li JC, Wang C, Qu XJ, Qi WT, Liu CL. Squalene epoxidase gene in medicinal plants:a review[J]. Modern Chinese Medicine, 2021, 23(10):1837-1841.

    [19]

    He F, Zhu Y, He M, Zhang Y. Molecular cloning and characterization of the gene encoding squalene epoxidase in Panax notogiseng[J]. DNA Seq, 2008, 9(3):270-273.

    [20] 马晓琳,李畏娴,王冬,路福平,戴住波,张学礼.常春藤皂苷元生物合成解析及酵母细胞工厂的构建[J].中国中药杂志, 2018, 43(9):1844-1850.

    Ma XL, Li WX, Wang D, Lu FP, Dai ZB, Zhang XL. Biosynthesis analysis of hederagen in pathway and its construction in yeast cells[J]. China Journal of Chinese Materia Medica, 2018, 43(9):1844-1850.

    [21] 曾桂萍.茯苓三萜生物合成关键基因的表达与调控机制研究[D].贵阳:贵州大学, 2019.
    [22] 詹忠根.基于多组学的丹参活性成分生物合成与调控研究进展[J].药学学报, 2020, 55(12):2892-2903.

    Zhan ZG. Advances in biosynthesis and regulation of the active ingredient of Salvia miltiorrhiza based on multio-mics approach[J]. Acta Pharmaceutica Sinica, 2020, 55(12):2892-2903.

    [23] 赵灿,郭丽娜,彭玉帅,刘辰,王如峰.三七总皂苷生物合成的关键酶及其调控研究进展[J].中草药, 2015, 46(19):2954-2965.

    Zhao C, Guo LN, Peng YS, Liu C, Wang RF. Research progress in key enzymes involved in biosynthesis of Panax notoginseng saponins and their regulation[J]. Chinese Traditional and Herbal Drugs, 2015, 46(19):2954-2965.

    [24] 唐其.罗汉果转录组、表达谱的高通量测序及甜苷V生物合成关键酶的克隆[D].北京:北京协和医学院, 2010:1-10.
    [25] 赵历强,单春苗,张声祥,施圆圆,马克龙,吴家文.基于转录组测序的细风轮花青素合成途径及关键酶基因分析[J].植物研究, 2020, 40(6):886-896.

    Zhao LQ, Shan CM, Zhang SX, Shi YY, Ma KL, Wu JW. Identification of key enzyme genes involved in anthocyanin synthesis pathway in Clinopodium gracile by transcriptome analysis[J]. Bulletin of Botanical Research, 2020, 40(6):886-896.

    [26] 单春苗,王晨凯,施圆圆,张声祥,赵历强,吴家文.多花黄精甾体皂苷生物合成途径分析及关键酶基因研究[J].中国中药杂志, 2020, 45(12):2847-2857.

    Shan CM, Wang CK, Shi YY, Zhang SX, Zhao LQ, Wu JW. Identification of key enzyme genes involved in biosynthesis of steroidal saponins and analysis of biosynthesis pathway in Polygonatum cyrtonema[J]. China Journal of Chinese Materia Medica, 2020, 45(12):2847-2857.

    [27]

    Kim CS, Winn MD, Sachdeva V, Jordan KE. K-mer clustering algorithm using a MapReduce framework:application to the parallelization of the inchworm module of trinity[J]. BMC Bioinformatics, 2017, 18(1):467.

    [28]

    Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. TIGR gene indices clustering tools (TGICL):a software system for fast clustering of large EST datasets[J]. Bioinformatics, 2003, 19(5):651.

    [29]

    Pirooznia M, Perkins EJ, Deng Y. Batch blast extractor:an automated blastx parser application[J]. BMC Geno-mics, 2008, 9(S2):S10.

    [30] 欧金梅,杨许,单春苗,张声祥,施圆圆,等.榔梅果实转录组分析及其柠檬酸生物合成途径关键酶基因结构与功能预测[J].中国中药杂志, 2020, 45(19):4606-4616.

    Ou JM, Yang X, Shan CM, Zhang SX, Shi YY, et al. Transcriptome analysis of "Langmei" fruits and key enzyme genes structure and function prediction involved in citric acid biosynthesis[J]. China Journal of Chinese Materia Medica, 2020, 45(19):4606-4616.

    [31]

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nature methods, 2012, 9(4):357-359.

    [32]

    Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.

    [33]

    Kusano M, Abe I, Sankawa U, Ebizuka Y. Purification and some properties of squalene-2,3-epoxide:lanosterol cyclase from rat liver[J]. Chem Pharm Bull, 1991, 39(1):239-241.

    [34]

    Howe V, Sharpe LJ, Prabhu AV, Brown AJ. New insights into cellular cholesterol acquisition:promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(7):647-657.

    [35] 赵欢,郭娟,唐其,郭兰萍,黄璐琦,马小军.罗汉果角鲨烯环氧酶基因的克隆及表达分析[J].中国中药杂志, 2018, 43(16):3255-3262.

    Zhao H, Guo J, Tang Q, Guo LP, Huang LQ, Ma XJ. Cloning and expression analysis of squalene epoxidase genes from Siraitia grosvenorii[J].China Journal of Chinese Materia Medica, 2018, 43(16):3255-3262.

    [36]

    Padyana AK, Gross S, Jin L, Cianchetta G, Narayanaswamy R, et al. Structure and inhibition mechanism of the catalytic domain of human squalene epoxidase[J]. Nature Communications, 2019, 10(1).

    [37] 袁铭铭,王茜,吴西,曾顺,邹传生,等.三叶木通正丁醇部位化学成分分离鉴定[J].中国实验方剂学杂志, 2020, 26(1):139-146.

    Yuan MM, Wang X, Wu X, Zeng S, Zou CS, et al. Chemical constituents of n-butanol extract part of Akebia trifoliata Caulis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(1):139-146.

    [38] 玄玲玲,杜萍,宫丽丽,刘丽宏.木通皂苷D对神经酰胺诱导的小鼠急性肺损伤的保护作用研究[J].中国临床药理学杂志, 2021, 37(11):1363-1366.

    Xuan LL, Du P, Gong LL, Liu LH. Protective effects of Akebia saponin D on ceramide-induced acute lung injury[J].The Chinese Journal of Clinical Pharmacology, 2021, 37(11):1363-1366.

    [39] 吴耿帆.基于网络药理学的木通治疗泌尿系统疾病的分子机制研究[J].中国当代医药, 2021, 28(13):17-24.

    Wu GF. Study on molecular mechanisms of Akebia Decne in treatment of urinary system diseases based on network pharmacology[J]. China Modern Medicine, 2021, 28(13):17-24.

    [40] 钟胜福.基于多组学数据分析小麦和三叶木通特异性状的分子机理[D].雅安:四川农业大学, 2019.
    [41]

    Suzuki H, Achnine L, Xu R, Matsuda SP, Dixon RA. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J]. Plant J, 2002, 32(6):1033-1048.

  • 期刊类型引用(1)

    1. 苏永峰,刘俐君,马红喜,袁引燕,张德恩,鲁晓燕. 基于转录组测序筛选新疆野苹果组培苗应答冻害谷胱甘肽代谢相关的基因. 果树学报. 2023(05): 829-840 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  506
  • HTML全文浏览量:  8
  • PDF下载量:  260
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-04-19
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回