高级检索+

镉胁迫对丹参生理特性和代谢特征的影响

袁俊, 盛莎莎, 刘荣鹏, 王晓云

袁俊, 盛莎莎, 刘荣鹏, 王晓云. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报, 2022, 40(3): 408-417. DOI: 10.11913/PSJ.2095-0837.2022.30408
引用本文: 袁俊, 盛莎莎, 刘荣鹏, 王晓云. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报, 2022, 40(3): 408-417. DOI: 10.11913/PSJ.2095-0837.2022.30408
Yuan Jun, Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2022, 40(3): 408-417. DOI: 10.11913/PSJ.2095-0837.2022.30408
Citation: Yuan Jun, Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2022, 40(3): 408-417. DOI: 10.11913/PSJ.2095-0837.2022.30408
袁俊, 盛莎莎, 刘荣鹏, 王晓云. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报, 2022, 40(3): 408-417. CSTR: 32231.14.PSJ.2095-0837.2022.30408
引用本文: 袁俊, 盛莎莎, 刘荣鹏, 王晓云. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报, 2022, 40(3): 408-417. CSTR: 32231.14.PSJ.2095-0837.2022.30408
Yuan Jun, Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2022, 40(3): 408-417. CSTR: 32231.14.PSJ.2095-0837.2022.30408
Citation: Yuan Jun, Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2022, 40(3): 408-417. CSTR: 32231.14.PSJ.2095-0837.2022.30408

镉胁迫对丹参生理特性和代谢特征的影响

基金项目: 

江西中医药大学博士科研启动基金项目(2020BSZR011);国家重点研发项目(2019YFC1712302)。

详细信息
    作者简介:

    袁俊(1990-),女,博士,副教授,研究方向为药用植物资源保护和药用植物生态学(E-mail:yuanjun519@126.com)。

    通讯作者:

    王晓云,E-mail:wxy20052002@aliyun.com

  • 中图分类号: Q945

Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge

Funds: 

This work was supported by grants from the Scientific Research Foundation for Doctors of the Jiangxi University of Chinese Medicine (2020BSZR011) and National Key R&D Program of China (2019YFC1712302).

  • 摘要: 采用盆栽实验以及液相色谱-质谱联用技术,对镉(Cd)胁迫下丹参(Salvia miltiorrhiza Bunge)的生理和代谢特征进行研究。结果显示:Cd胁迫下丹参根中的Cd、脯氨酸和可溶性蛋白含量均显著增加;丙二醛(Malondialdehyde,MDA)含量显著下降;还原型谷胱甘肽(Glutathione,GSH)含量和超氧化物歧化酶(Superoxide dismutase,SOD)活性变化不显著;过氧化物酶(Peroxidase,POD)活性显著下降,但过氧化氢酶(Catalase,CAT)活性显著增加。同时也发现丹参代谢物含量发生了变化,共筛选出51个差异标志代谢物(主要是有机酸和氨基酸);L-脯氨酸和L-组氨酸的差异倍数(Fold change, FC)均大于2.5,是上调较多的氨基酸;3,4,5-三甲氧基苯甲酸和迷迭香酸FC值均大于5,是上调较多的有机酸;Cd与差异标志代谢物(尤其是氨基酸和有机酸)呈显著正相关。研究结果说明丹参可积累一定量的Cd,高浓度的Cd胁迫可引起丹参膜脂过氧化,限制其抗氧化酶的活性,影响其代谢过程。丹参主要通过调节氨基酸和有机酸代谢,上调L-脯氨酸、L-组氨酸、3,4,5-三甲氧基苯甲酸和迷迭香酸抵御Cd胁迫。
    Abstract: The effects of cadmium (Cd) on the physiological indices and metabolomics of Salvia miltiorrhiza Bunge were investigated by pot experiments. Results showed that Cd stress significantly enhanced Cd, proline, and soluble protein content, decreased malondialdehyde (MDA) content (P < 0.05), increased catalase (CAT) activity, and inhibited peroxidase (POD) activity, with GSH contend and superoxide dismutase (SOD) activitivity showing no significant differences between the control and Cd stress group in S. miltiorrhiza roots. The metabolite profiles differed between the two groups, with 51 discriminating metabolites (mainly organic acids and amino acids) identified, which were mainly involved in amino acid and organic acid metabolism. The fold-change (FC) values of L-proline and L-histidine were greater than 2.5, and the FC values of 3,4,5-trimethoxybenzoic acid and rosmarinic acid were greater than 5, and they were the most up-regulated. There were significant positive correlations between Cd and the discriminating metabolites (especially amino acids and organic acids). These results revealed that S. miltiorrhiza accumulated a certain amount of Cd, and high levels of Cd stress led to peroxidation of membrane lipids, inhibition of antioxidant enzyme activities, and effects on the metabolomes of S. miltiorrhiza. Furthermore, S. miltiorrhiza resisted Cd stress mainly by regulating the metabolism of amino acids and organic acids, and up-regulating L-proline, L-histidine, 3,4,5-trimethoxybenzoic acid, and rosmarinic acid.
  • [1] 刘瑞振.野生丹参种质资源遗传与形态多样性初步研究[D].杭州:浙江理工大学, 2017:1-10.
    [2]

    Chen B, Huang C, Zhang Y, Tang X, Li S, et al. Salvia bowleyana Dunn root is a novel source of salvianolic acid B and displays antitumor effects against gastric cancer cells[J]. Oncol Lett, 2020, 20(1):817-827.

    [3] 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社, 2015:76.
    [4]

    Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:a review[J]. J Environ Manage, 2019, 246:101-118.

    [5]

    Qin G, Niu Z, Yu J, Li Z, Ma J, Xiang P. Soil heavy metal pollution and food safety in China:effects, sources and removing technology[J]. Chemosphere, 2021, 267:129205.

    [6] 环境保护部,国土资源部.全国土壤污染状况调查公报[R/OL].(2014-04-17)[2022-05-16].http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.[BFY]
    [7]

    Friberg LT, Elinder GG, Kjellstrom T, Nordberg GF. Cadmium and Health:A Toxicological and Epidemiological Appraisal[M]. Boca Raton:CRC Press, 2019:240-390.

    [8]

    Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity[J]. Int J Env Res Pub He, 2020, 17(11):3782.

    [9]

    Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J]. Rev Environ Contam T, 2017, 241:73-137.

    [10] 赵连华,杨银慧,胡一晨,杨世海,金红宇,等.我国中药材中重金属污染现状分析及对策研究[J].中草药, 2014, 45(9):1199-1206.

    Zhao LH, Yang YH, Hu YC, Yang SH, Jin HY, et al. Current situation analysis and countermeasures on contamination of heavy metal in traditional Chinese medicinal mate-rials in China[J]. Chinese Traditional and Herbal Drugs, 2014, 45(9):1199-1206.

    [11]

    Fu R, Shi M, Deng C, Zhang Y, Zhang X, et al. Improved phenolic acid content and bioactivities of Salvia miltiorrhiza hairy roots by genetic manipulation of RAS and CYP98A14[J]. Food Chem, 2020, 331(7):127365.

    [12]

    Xia P, Hu W, Liang T, Yang D, Liang Z. An attempt to establish an Agrobacterium-mediated transient expression system in medicinal plants[J]. Protoplasma 2020, 257(6):1497-1505.

    [13] 刘畅,徐应明,黄青青,陶雪莹,王林,等.不同冬小麦品种镉富集转运及离子组特征差异[J].环境科学, 2021, 43(3):1597-1605.

    Liu C, Xu YM, Huang QQ, Tao XY, Wang L, et al. Variations in cadmium accumulation and transport and ionomic traits among different winter wheat varieties[J]. Environmental Science, 2021, 43(3):1597-1605.

    [14] 王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2006:196-204.
    [15] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:164-165.
    [16] 赵莉,周炎,汪海燕,史宏志,赵世民,等.干旱处理下不同烤烟品系的生理差异研究[J].核农学报, 2019, 33(3):607-615.

    Zhao L, Zhou Y, Wang HY, Shi HZ, Zhao SM, et al. Research on the differential physiological responses in diffe-rent flue-cured tobacco lines under drought stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3):607-615.

    [17]

    Wei X, Cao P, Wang G, Han J. Microbial inoculant and garbage enzyme reduced cadmium (Cd) uptake in Salvia miltiorrhiza (Bge.) under Cd stress[J]. Ecotoxicol Envi-ronl Safety, 2020, 192(3):110311.

    [18]

    Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicol Lett, 2003, 137(1-2):65-83.

    [19] 张鑫,李昆伟,陈康健,梁健,崔浪军.镉胁迫对丹参生长及有效成分积累的影响研究[J].植物科学学报, 2013, 31(6):583-589.

    Zhang X, Li KW, Chen KJ, Liang J, Cui LJ. Effects of cadmium stress on seedlings growth and active ingre-dients in Salvia miltiorrhiza[J]. Plant Science Journal, 2013, 31(6):583-589.

    [20] 尚玉坤,刘思凯,陈杨晗,刘鲡,唐学博,等.镉胁迫对东营野生大豆幼苗抗氧化系统及可溶性蛋白的影响[J].四川农业大学学报, 2019, 37(1):15-21.

    Shang YK, Liu SK, Chen YH, Liu L, Tang XB, et al. Effects of antioxidant system and soluble protein in Dong-ying wild soybean seedling under cadmium stress[J]. Journal of Sichuan Agricultural University, 2019, 37(1):15-21.

    [21] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7):1196-1203.

    Wei ZY, Chen TB. Hyperaccumulators and phytoreme-diation of heavy metal contaminated soil:a review of stu-dies in China and abroad[J]. Acta Ecologica Sinica, 2001, 21(7):1196-1203.

    [22]

    Hegedüs A, Erdei S, Janda T, Tóth E, Horváth G, Dudits D.Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress[J]. Plant Sci, 2004, 166(5):1329-1333.

    [23] 杨叶萍,简敏菲,余厚平,龚秋林,陈勇玲.镉胁迫对苎麻(Boehmeria nivea)根系及叶片抗氧化系统的影响[J].生态毒理学报, 2016, 11(4):184-193.

    Yang YP, Jiang MF, Yu HP, Gong QL, Chen YL. Inf-luence on the antioxidant system in roots and leaves of Boehmeria nivea under different cadmium stress[J]. Asian Journal of Ecotoxicology, 2016, 11(4):184-193.

    [24] 张然然,张鹏,都韶婷.镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展[J].应用生态学报, 2016, 27(3):981-992.

    Zhang RR, Zhang P, Dou ST. Oxidative stress-related signals and their regulation under Cd stress:a review[J]. Chinese Journal of Applied Ecology, 2016, 27(3):981-992.

    [25]

    Wang HR, Che YH, Huang D, Ao H. Hydrogen sulfide mediate alleviation of cadmium toxicity in Phlox paniculata L. and establishment of a comprehensive evaluation model for corresponding strategy[J]. Int J Phytoremediat, 2020, 22(10):1085-1095.

    [26] 朱润华,贺忠群,王海霞,白胜,阳圣莹,蒋浩宏.镉胁迫处理对水培苦苣幼苗生理响应及叶片超微结构的影响[J].西南农业学报, 2021, 34(6):1302-1308.

    Zhu RH, He ZQ, Wang HX, Bai S, Yang SY, Jiang HH. Effects of cadmium stress on physiological response and leaf ultrastructure of hydroponic Cichorium endivia L. seedling[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(6):1302-1308.

    [27] 赵胡,唐俊,郑文教.重金属Cu2+胁迫对红树植物秋茄幼苗生长及某些生理特性的影响[J].海洋科学, 2016, 40(4):65-72.

    Zhao H, Tang J, Zheng WJ. Growth and physiological characteristics of Kandelia obovata seedlings under Cu2+ stress[J]. Marine Sciences, 2016, 40(4):65-72.

    [28]

    Furlan AL, Bianucci E, Giordano W, Castro S, Becker DF. Proline metabolic dynamics and implications in drought tolerance of peanut plants[J]. Plant Physiol Bioch, 2020, 151:566-578.

    [29] 王川,李昆伟,魏宇昆,崔浪军,李发荣. Cu2+胁迫对丹参生长及有效成分积累的影响[J].植物研究, 2012, 32(1):124-128.

    Wang C, Li KW, Wei YK, Cui LJ, Li RF. Effects of copper stress on seedlings growth and active ingredients of Salvia miltiorrhiza[J]. Bulletin of Botanical Research, 2012, 32(1):124-128.

    [30]

    Rafael C, Joaquín M, Julio S. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(39):16475-16480.

    [31]

    Srivastava S, Tripathi RD, Dwivedi UN. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite[J]. J Plant Physiol, 2004, 161(6):665-674.

    [32]

    Sozoniuk M, Nowak M, Dudziak K, Bulak P, Kowalczyk K. Antioxidative system response of pedunculate oak (Quercus robur L.) seedlings to Cd exposure[J]. Physiol Mol Biol Pla, 2019, 25(6):1377-1384.

    [33]

    Yan H, Filardo F, Hu XT, Zhao XM, Fu DH. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves[J]. Environ Sci Pollut R, 2016, 23(4):3758-3769.

    [34] 赛闹汪青,张牡丹,马小俊,冉瑞兰,贾凌云,冯汉青.镉胁迫对黄芪幼苗的生理学影响及凹凸棒粘土对镉胁迫缓解作用的研究[J].中国中药杂志, 2018, 43(15):3115-3126.

    Sainao WQ, Zhang MD, Ma XJ, Ran RL, Jia LY, Feng HQ. Physiological effects of cadmium stress on Astragalus membranaceus seedlings and alleviative effects of attapulgite clay on cadmium stress[J]. China Journal of Chinese Materia Medica, 2018, 43(15):3115-3126.

    [35] 谢勇,王友绍.重金属胁迫下四种红树植物幼苗生理响应特征[J].热带海洋学报, 2021.

    Xie Y, Wang YS. Physiological response characteristics of four mangrove plants seedlings under heavy metal stress[J]. Journal of Tropical Oceanography, 2021.

    [36] 李子唯.三七对重金属镉的富集效应及其生理机制研究[D].昆明:昆明理工大学, 2017:31-36.
    [37] 卢倩云,曹宇棽,陈友明,晏琼.镉胁迫下油菜毛状根的生理响应及铁钾含量[J].应用与环境生物学报, 2018, 24(6):1382-1389.

    Lu QY, Cao YM, Chen YM, Yan Q. The physiological response and iron and potassium contents in the hairy roots of Brassica rape L. under cadmium stress[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6):1382-1389.

    [38]

    Sharma SS, Dietz KJ. The relationship between metal to-xicity and cellular redox imbalance[J]. Trends Plant Sci, 2009, 14(1):50.

    [39]

    Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones[J]. BMC Plant Biol, 2014, 14(1):13.

    [40] 赵园园.硒对镉胁迫下油菜生长及根部镉响应的调控[D].武汉:华中农业大学, 2019:17-31.
    [41] 何其浩,周韬,孙吉康,王平,白垒,刘志明.镉胁迫对栾树幼苗不同组织部位转录组差异研究[J].环境科学学报, 2021, 42(3):1-15.

    He QH, Zhou T, Sun JK, Wang P, Bai L, Liu ZM. Effect of cadmium stress on transcriptome differences in roots and leaves of Koelreuteria paniculata seedlings[J]. Acta Scientiae Circumstantiae, 2021, 42(3):1-15.

    [42] 范卫芳.镉胁迫下绢毛委陵菜转录组分析及PsMYB2转录因子功能初步研究[D].哈尔滨:东北林业大学, 2021:11-19.
    [43]

    Liu YC, Ma W, Niu JF, Li B, Zhou W, et al. Systematic analysis of SmWD40s, and responding of SmWD40-170 to drought stress by regulation of ABA-and H2O2-induced stomal movement in Salvia miltiorrhiza Bunge[J]. Plant Physiol Biochem,2020, 153:131-140.

    [44]

    Wei T, Deng K, Gao Y, Liu Y, Yang M, et al. Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tole-rance to drought stress without stunting growth[J]. Plant Physiol Bioch, 2016, 104:17-28.

    [45]

    Ali F, Qanmber G, Wei Z, Yu D, Li Y, et al. Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses[J]. BMC Plant Biol, 2020, 21:561.

    [46] 唐杰,徐浩洋,王昌全,王玉云,李冰,曹淋海.镉胁迫对3个水稻品种(系)根系生长及有机酸和氨基酸分泌的影响[J].湖南农业大学学报(自然科学版), 2016, 42(2):118-124.

    Tang J, Xu HY, Wang CQ, Wang YY, Li B, Cao LH. Effect of cadmium stress on root growth and organic acids and amino acid secretion of three rice varieties[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(2):118-124.

    [47]

    Bailey NJ, Oven M, Holmes E, Nicholson JK, Zenk MH. Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics[J]. Phytochemistry, 2003, 62(6):851-858.

    [48] 梁昕昕,辛亚平,贾雪,闫兴富,魏玉清,赵会君.宁夏枸杞幼苗叶片中抗氧化酶及游离氨基酸对镉胁迫的响应[J].生态毒理学报, 2021, 16(6):222-233.

    Liang XX, Xin YP, Jia X, Yan XF, Wei YQ, Zhao HJ. Response of antioxidative enzymes activities and amino acids concentrations in leaf tissues of Lycium barbarum L. seedlings under cadmium stress[J]. Asian Journal of Ecotoxicology, 2021, 16(6):222-233.

    [49]

    Manquián-Cerda K, Escudey M, Zúñiga G, Arancibia-Miranda N, Molina M, Cruces E. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro[J]. Ecotoxicol Environ Safety, 2016, 133:316-326.

    [50]

    Baranauskaite J, Sadauskiene I, Liekis A, Kasauskas A, Lazauskas R, et al. Natural compounds rosmarinic acid and carvacrol counteract aluminium-induced oxidative stress[J]. Molecules, 2020, 25(8):1807.

    [51] 胡雪萍.水稻响应镉胁迫代谢组学研究[D].南昌:南昌大学, 2019:19-24.
    [52] 谭飘飘.芥菜对镉胁迫的生理代谢响应及外源脯氨酸的调控作用研究[D].长沙:中南林业科技大学, 2021:35-65.
计量
  • 文章访问数:  469
  • HTML全文浏览量:  12
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回