高级检索+

拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展

武兆云, 薛刚, 孙聚涛, 张智强, 张倩, 杨铁钊

武兆云, 薛刚, 孙聚涛, 张智强, 张倩, 杨铁钊. 拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展[J]. 植物科学学报, 2022, 40(3): 426-436. DOI: 10.11913/PSJ.2095-0837.2022.30426
引用本文: 武兆云, 薛刚, 孙聚涛, 张智强, 张倩, 杨铁钊. 拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展[J]. 植物科学学报, 2022, 40(3): 426-436. DOI: 10.11913/PSJ.2095-0837.2022.30426
Wu Zhao-Yun, Xue Gang, Sun Ju-Tao, Zhang Zhi-Qiang, Zhang Qian, Yang Tie-Zhao. Advances in research on the molecular mechanisms of potassium absorption, transport, and low potassium stress in Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(3): 426-436. DOI: 10.11913/PSJ.2095-0837.2022.30426
Citation: Wu Zhao-Yun, Xue Gang, Sun Ju-Tao, Zhang Zhi-Qiang, Zhang Qian, Yang Tie-Zhao. Advances in research on the molecular mechanisms of potassium absorption, transport, and low potassium stress in Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(3): 426-436. DOI: 10.11913/PSJ.2095-0837.2022.30426
武兆云, 薛刚, 孙聚涛, 张智强, 张倩, 杨铁钊. 拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展[J]. 植物科学学报, 2022, 40(3): 426-436. CSTR: 32231.14.PSJ.2095-0837.2022.30426
引用本文: 武兆云, 薛刚, 孙聚涛, 张智强, 张倩, 杨铁钊. 拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展[J]. 植物科学学报, 2022, 40(3): 426-436. CSTR: 32231.14.PSJ.2095-0837.2022.30426
Wu Zhao-Yun, Xue Gang, Sun Ju-Tao, Zhang Zhi-Qiang, Zhang Qian, Yang Tie-Zhao. Advances in research on the molecular mechanisms of potassium absorption, transport, and low potassium stress in Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(3): 426-436. CSTR: 32231.14.PSJ.2095-0837.2022.30426
Citation: Wu Zhao-Yun, Xue Gang, Sun Ju-Tao, Zhang Zhi-Qiang, Zhang Qian, Yang Tie-Zhao. Advances in research on the molecular mechanisms of potassium absorption, transport, and low potassium stress in Arabidopsis thaliana (L.) Heynh.[J]. Plant Science Journal, 2022, 40(3): 426-436. CSTR: 32231.14.PSJ.2095-0837.2022.30426

拟南芥钾离子吸收、转运及低钾胁迫的分子机理研究进展

基金项目: 

河南农业大学科技创新基金项目(KJCX2015A09);河南省高校重点科研项目(17B210004)。

详细信息
    作者简介:

    武兆云(1979-),男,博士,讲师,研究方向为烟草育种(E-mail:wuzhaoyun@henau.edu.cn)。

    通讯作者:

    杨铁钊,E-mail:yangtiezhao@outlook.com

  • 中图分类号: Q943.2

Advances in research on the molecular mechanisms of potassium absorption, transport, and low potassium stress in Arabidopsis thaliana (L.) Heynh.

Funds: 

This work was supported by grants from the Henan Agricultural University S&T Innovation Fund Project (KJCX2015A09) and Henan Provincial University Key Scientific Research Project (17B210004).

  • 摘要: 钾(K)作为植物所需的3种大量元素之一,参与体内诸多的生理和生化过程,对于植物的生长和发育极其重要。目前,国内外学者对植物吸收、运输和利用K+的研究已有一定深度,尤其以模式植物拟南芥(Arabidopsis thaliana (L.) Heynh.)为研究对象。其中,与K+吸收、转运相关的离子通道和转运蛋白一直都是研究热点。本文综合近年来国内外相关研究进展,主要阐述K+通道和转运蛋白,K+的吸收和运输,类钙调磷酸酶(Calcineurin B-Like,CBL)-CBL相互作用蛋白激酶(CBL-Interacting protein kinase,CIPK)信号途径,参与该信号转导的一些小信号分子,对K+研究方面存在的问题进行了总结,并对未来的研究方向进行了展望。
    Abstract: As one of the three macronutrients required by plants, potassium (K) participates in many physiological and biochemical processes in the body and is extremely important for plant growth and development. Research has been carried out on K+ absorption, transportation, and utilization by plants, especially the model plant Arabidopsis thaliana, with a particular focus on ion channels and transporters related to K+ absorption and transport. This article summarizes current research progress, especially that related to K+ channels and transporters, K+ absorption and transport, calcineurin B-like (CBL)-CBL-interacting protein kinase (CIPK) signaling pathway, and small signal molecules involved in signal transduction. This article also summarizes existing problems in K+ research and discusses future research directions.
  • [1]

    Leigh RA, Wyn Jones RG.A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytol, 1984, 97(1):1-13.

    [2]

    Clarkson DT, Hanson JB. The mineral nutrition of higher plants[J]. Annu Rev Plant Biol, 1980, 31(1):239-298.

    [3]

    Maathuis FJM. Physiological functions of mineral macronutrients[J]. Curr Opin Plant Biol, 2009. 12(3):250-258.

    [4]

    Amtmann A,Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 2008, 133(4):682-691.

    [5]

    Hedrich R. Ion channels in plants[J]. Physiol Rev, 2012, 92(4):1777-1811.

    [6]

    Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C,et al. Molecular biology of K+ transport across the plant cell membrane:what do we learn from comparison between plant species?[J]. Plant Physiol, 2014, 171(9):748-769.

    [7]

    Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM. Regulation of K+nutrition in plants[J]. Front Plant Sci, 2019, 10:281.

    [8]

    Dabravolski SA, Isayenkov SV. New insights into plant tpk ion channel evolution[J]. Plants (Basel), 2021, 10(11):2328.

    [9]

    Nieves-Cordones M, Alemán F, Martínez V, Rubio F. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms[J]. Plant Physiol, 2014, 171(9):688-695.

    [10]

    Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters:function and regulation[J]. Semin Cell Dev Biol, 2018, 74:133-141.

    [11]

    Sze H, Chanroj S.Plant endomembrane dynamics:stu-dies of K+/H+antiporters provide insights on the effects of pH and ion homeostasis[J]. Plant Physiol, 2018, 177(3):875-895.

    [12]

    Lefoulon C. The bare necessities of plant K+ channel regulation[J]. Plant Physiol, 2021, 187(4):2092-2109.

    [13]

    Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, et al. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis[J]. Plant Cell, 2009, 21(9):2859-2877.

    [14]

    Sutter JU, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane[J]. Plant Cell, 2006, 18(4):935-954.

    [15]

    Huang Y, Wang W, Yu H, Peng J, Hu Z, et al. The role of 14-3-3 proteins in plant growth and response to abiotic stress[J]. Plant Cell Rep,2022, 41(4):833-852.

    [16]

    Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giaco-metti S, et al. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins[J]. J Biol Chem, 2006, 281(47):35735-35741.

    [17]

    Locascio A, Marqués MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N,et al. BCL2-ASSOCIATED ATHANOGENE4 regulates the kat1 potassium channel and controls stomatal movement[J]. Plant Physiol, 2019, 181(3):1277-1294.

    [18]

    Bassil E, Zhang S, Gong H, Tajima H, Blumwald E. Cation specificity of vacuolar nhx-type cation/h+ antiporters[J]. Plant Physiol, 2019, 179(2):616-629.

    [19]

    Zhu X, Pan T, Zhang X, Fan L, Quintero FJ,et al. K+efflux antiporters 4, 5, and 6 mediate pH and k+ homeostasis in endomembrane compartments[J]. Plant Physiol, 2018, 178(4):1657-1678.

    [20]

    Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, et al. AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx[J]. Proc Natl Acad Sci USA, 2002, 99(6):4079-4084

    [21]

    Duby G, Hosy E, Fizames C, Alcon C, Costa A, et al. AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels[J]. Plant J, 2008, 53(1):115-123.

    [22]

    Geiger D, Becker D, Vosloh D, Gambale F, Palme K, et al, Heteromeric AtKC1.AKT1 channels in Arabidopsis roots facilitate growth under k+-limiting conditions[J]. J Biol Chem, 2009, 284(32):21288-21295.

    [23]

    Wang Y, He L, Li HD, Xu J, Wu WH. Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress[J]. Cell Res, 2010, 20(7):826-837.

    [24]

    Wang XP, Chen LM, Liu WX, Shen LK, Wang FL,et al. AtKC1 and CIPK23 synergistically modulate AKT1-mediated low-potassium stress responses in Arabidopsis[J]. Plant Physiol, 2016, 170(4):2264-2277.

    [25]

    Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, et al.AtKC1 is a general modulator of Arabidopsis inward shaker channel activity[J]. Plant J, 2011, 67(4):570-582.

    [26]

    Wang Y, Wu W. Plant sensing and signaling in response to K+-deficiency[J]. Mol Plant, 2010, 3(2):280-287.

    [27]

    Han M, Wu W, Wu WH, Wang Y. Potassium transporter KUP7 is involved in k+ acquisition and translocation in Arabidopsisroot under k+-limited conditions[J]. Mol Plant, 2016, 9(3):437-446.

    [28]

    GierthM, Maser P, Schroeder JI. The potassium transpor-ter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiol, 2005, 137(3):1105-1114.

    [29]

    Pyo YJ, Gierth M, Schroeder JI, Cho MH. High-affinity k+ transport in Arabidopsis:AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions[J]. Plant Physiol, 2010, 153(2):863-875.

    [30]

    Yang T, Zhang S, Hu Y, Wu F, Hu Q,et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiol, 2014, 166(2):945-959.

    [31]

    Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiol, 2004, 136(1):2556-2576.

    [32]

    Shin R, Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad Sci USA, 2004, 101(23):8827-8832.

    [33]

    Gierth M, Maser P, Schroeder JI. The potassium transpor-ter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots[J]. Plant Physiol, 2005, 137(3):1105-1114.

    [34]

    Jung JY, Shin R, Schachtman DP. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[J]. Plant Cell, 2009, 21(2):607-621.

    [35]

    Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, et al. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism[J]. Proc Natl Acad Sci USA, 2020, 117(49):31500-31509.

    [36]

    Li H, Yu M, Du XQ, Wang ZF, Wu WH, et al. NRT1.5/NPF7.3 functions as a proton-coupled h+/k+ antiporter for k+ loading into the xylem inArabidopsis[J]. Plant Cell, 2017, 29(8):2016-2026.

    [37]

    Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero RM, et al. Modulation of K+ translocation by AKT1 and AtHAK5 in Arabidopsis plants[J]. Plant Cell Environ, 2019, 42(8):2357-2371.

    [38]

    Chérel I, Michard E, Platet N, Mouline K, Alcon C, et al. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA[J]. Plant Cell, 2002, 14(5):1133-1146.

    [39]

    Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K,et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Res, 2011, 21(7):1116-1130.

    [40]

    Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, et al, Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs)[J]. Mol Plant, 2013, 6(4):1274-1289.

    [41]

    Uehara C, Takeda K, Ibuki T, Furuta T, Hoshi N,et al. Analysis of Arabidopsis TPK2 and KCO3 reveals structural properties required for K+ channel function[J]. Channels (Austin), 2020, 14(1):336-346.

    [42]

    Höhner R, Galvis VC, Strand DD, Völkner C, Krämer M,et al. Photosynthesis in Arabidopsisis unaffected by the function of the vacuolar k+ channel TPK3[J]. Plant Physiol, 2019,180(3):1322-1335.

    [43]

    Tang RJ, Zhao FG, Yang Y, Wang C, Li K,et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nat Plants, 2020, 6(4):384-393.

    [44]

    Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P,et al.KAT1 is not essential for stomatal opening[J]. Proc Natl Acad Sci USA, 2001, 98(5):2917-2921.

    [45]

    Latz A, Ivashikina N, Fischer S, Ache P, Sano T, et al. In planta AKT2 subunits constitute a pH-and Ca2+-sensitive inward rectifying K+ channel[J]. Planta, 2007,225(5):1179-1191.

    [46]

    Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels[J]. Proc Natl Acad Sci USA, 2008, 105(13):5271-5276.

    [47]

    Xu J, Li HD, Chen LQ, Wang Y, Liu LL, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell, 2006. 125(7):1347-1360.

    [48]

    Lara A, Ródenas R, Andrés Z, Martínez V, Quintero FJ, et al. Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9[J]. J Exp Bot, 2020, 71(16):5053-5060.

    [49]

    Tang RJ, Wang C, Li K, Luan S. The CBL-CIPK calcium signaling network:unified paradigm from 20 years of discoveries[J]. Trends Plant Sci, 2020, 25(6):604-617.

    [50]

    Luan S, Wang C. Calcium signaling mechanisms across kingdoms[J]. Annu Rev Cell Dev Biol, 2021, 37:311-340.

    [51]

    Tong T, Li Q, Jiang W, Chen G, Xue D, et al. Molecular evolution of calcium signaling and transport in plant adaptation to abiotic stress[J]. Int J Mol Sci, 2021, 22(22):12308.

    [52]

    Wang X, Hao L, Zhu B, Jiang Z. Plant calcium signaling in response to potassium deficiency[J]. Int J Mol Sci, 2018, 19(11):3456.

    [53]

    Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N,et al. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14[J]. J Mol Biol, 2008, 377(1):246-257.

    [54]

    Sánchez-Barrena MJ, Chaves-Sanjuan A, Raddatz N, Mendoza I, Cortés,et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23[J].Plant Physiol, 2020,182(4):2143-2153.

    [55]

    Yadav AK, Jha SK, Sanyal SK, Luan S, Pandey GK. Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9[J]. Biochem J, 2018, 475(16):2621-2636.

    [56]

    Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, et al. CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis[J]. Cell Res, 2007, 17(5):411-421.

    [57]

    Singh A, Yadav AK, Kaur K, Sanyal SK, Jha SK,et al. A protein phosphatase 2C, AP2C1, interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis[J]. J Exp Bot, 2018, 69(16):4003-4015.

    [58]

    Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009. 138(6):1184-1194.

    [59]

    Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I,et al. The CBL-interacting protein kinase cipk23 regulates hak5-mediated high-affinity k+ uptake in Arabidopsis roots[J]. Plant Physiol, 2015, 169(4):2863-2873.

    [60]

    Behera S, Long Y, Schmitz-Thom I, Wang XP, Zhang C,et al. Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency[J]. New Phytol, 2017, 213(2):739-750.

    [61]

    Demidchik V, Shabala SN, Davies JM. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels[J]. Plant J, 2007, 49(3):377-386.

    [62]

    Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000,406(6797):731-734.

    [63]

    Wang FL, Tan YL, Wallrad L, Du XQ, Eickelkamp A, et al. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis[J]. Dev Cell, 2021,56(6):781-794

    [64]

    Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, et al.Arabidopsis root K+-efflux conductance activated by hydroxyl radicals:single-channel properties, genetic basis and involvement in stress-induced cell death[J]. J Cell Sci, 2010, 123(9):1468-1479.

    [65]

    Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, et al. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2[J]. J Biol Chem, 2010, 285(38):29286-29294.

    [66]

    Zhao S, Zhang ML, Ma TL, Wang Y.Phosphorylation of ARF2 relieves its repression of transcription of the k+ transporter gene HAK5 in response to low potassium stress[J]. Plant Cell, 2016, 28(12):3005-3019.

    [67]

    Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant[J]. Plant Mol Biol, 2003, 51(5):773-787.

    [68]

    Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, et al. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots[J]. Plant J, 2004, 40(4):523-535.

    [69]

    Daras G, Rigas S, Tsitsekian D, Iacovides TA, Hatzopoulos P. Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway[J]. Plant Sci, 2015, 231:131-137.

    [70]

    Zhang ML, Huang PP, Ji Y, Wang S, Wang SS,et al. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K[J]. EMBO Rep, 2020, 21(6):e50164.

    [71]

    Du XQ, Wang FL, Li H, Jing S, Yu M, et al. The transcription factor MYB59 regulates K+/NO-3 translocation in the Arabidopsis response to low k+ stress[J]. Plant Cell, 2019, 31(3):699-714.

  • 期刊类型引用(1)

    1. 苏永峰,刘俐君,马红喜,袁引燕,张德恩,鲁晓燕. 基于转录组测序筛选新疆野苹果组培苗应答冻害谷胱甘肽代谢相关的基因. 果树学报. 2023(05): 829-840 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  512
  • HTML全文浏览量:  34
  • PDF下载量:  259
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-03-09
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回