Effects of fallen flower and leaf litter ratios on the decomposition of Robinia pseudoacacia L. forest litter in hilly regions of the Loess Plateau
-
摘要:
落花是森林凋落物的重要组成部分,明确其在林地凋落物混合分解中的作用有助于理解和预测林地养分的循环过程。本研究以林龄为33 a的刺槐(Robinia pseudoacacia L.)人工林产生的落花、凋落叶以及落花占比分别为30%、20%、10%和5%的花叶混合凋落物为对象,使用微生物接种法,在室内控制条件下(20℃~25℃、避光恒湿)进行为期62 d的早期分解实验,研究不同比例花叶混合凋落物的分解速率以及碳(C)、氮(N)和磷(P)释放速率的影响。结果显示:(1)落花比例达到10%时,花叶混合凋落物的分解速率显著高于纯叶凋落物,且当落花比例提高到20%~30%时,混合凋落物的分解速率再次显著提高,但花叶混合并未对凋落物的分解速率产生显著的非加和效应。(2)混合物中落花比例为10%~20%时,其C、N释放率显著高于纯凋落叶,且随落花所占比例增加,上述元素的释放呈加速趋势。实验前期高落花比例混合凋落物的P释放率普遍高于纯凋落叶或低落花比例混合凋落物,而在后期则呈相反的规律。花叶混合分解倾向于对凋落物的C和N释放产生协同促进,且该效应随落花比例的增加而增强,而对凋落物的P释放产生拮抗抑制作用,且该效应随落花比例的增加先减弱后增强。
Abstract:Fallen flowers are an important component of forest litter and clarifying their role in the mixed decomposition of forest litter is important for understanding and forecasting the nutrient cycle in forests. In the present study, fallen flowers and leaf litter produced from a 33-year Robinia pseudoacacia L. plantation were collected. Pure leaf litter and mixed litter (leaves with flowers at proportions of 30%, 20%, 10%, and 5%) were incubated for 62 d to conduct an early-stage decomposition test using soil microbial infection under controlled conditions (20℃–25℃, photophobic, constant humidity). The decomposition rate and carbon (C), nitrogen (N), and phosphorus (P) release rates of the leaf litter and flower mixtures were investigated. Results indicated that: (1) When the proportion of flowers reached 10%, the decomposition rate of the mixed litter was significantly higher than that of the pure leaf litter, and when the proportion reached 20%–30%, the decomposition rate was significantly higher again. However, the mixing of leaves and flowers did not have a significant non-additive effect on decomposition. (2) When the proportion of flowers in the mixture was 10%–20%, the C and N release rates were significantly higher than that of pure leaf litter. In addition, the C and N release rates tended to increase with an increasing proportion of flowers. During the early stages of decomposition, the P release rates tended to be significantly higher for the mixtures with higher flower proportions than those with lower flower proportions or pure leaf litter but exhibited the opposite trend with increasing decomposition. The mixed decomposition of leaf litter and flowers tended to promote C and N release synergistically, showing an increased tendency with increasing proportion of flowers. However, mixed decomposition had an antagonistic inhibitory effect on P release from litter, showing a weakened then enhanced trend with increasing proportion of flowers.
-
Keywords:
- Fallen flowers /
- Leaf litter /
- Proportions /
- Mixed decomposition /
- Non-additive effects
-
地黄(Rehmannia glutinosa Libosch.)为玄参科地黄属植物,多年生草本,以块根入药,为著名的“四大怀药”之一。地黄最早记载见《神农本草经》,被列为上品,迄今已有2000余年的应用历史。根据炮制方法的不同,地黄药材分为鲜地黄、生地黄和熟地黄[1]。2020版《中国药典》记载,鲜地黄具有清热生津、凉血、止血的功效,生地黄具有清热凉血、养阴生津的功效,熟地黄具有补血滋阴,益精填髓的功效[2]。地黄富含环烯醚萜类、苯乙醇苷类、紫罗兰酮类、三萜类、黄酮类和糖类等,对人体心脑血管、血液、中枢神经和免疫系统等均有显著作用[3]。
毛蕊花糖苷(Acteoside)是地黄中含量较高的苯乙醇苷类化合物[4],具有抗氧化、免疫调节、抗炎、保肝、抗肿瘤、增强记忆力等生物活性[5],是2010版、2015版《中国药典》规定的地黄药材质量控制的指标性成分之一。地黄毛蕊花糖苷的含量易受品种[6]、产地[7]、收获时期[5]、种植密度[8]和光照条件[9]等因素的影响,造成某些年份部分地黄药材的毛蕊花糖苷含量达不到《中国药典》规定的要求。地黄毛状根中也含有丰富的毛蕊花糖苷,本课题组前期研究表明,在毛状根诱导的特定时期添加水杨酸(SA)可显著促进毛蕊花糖苷的含量[10]。然而,地黄生长发育过程中叶面喷施SA对毛蕊花糖苷的含量是否有影响还未见报道。
本研究以大田栽培的地黄为材料,采用叶面喷施方法分析SA对地黄叶片和块根毛蕊花糖苷含量的影响,并利用转录组测序技术分析地黄块根中的基因表达特征,研究结果旨在为生产中应用外源激素提高毛蕊花糖苷的含量提供理论依据。
1. 材料与方法
1.1 实验材料
供试材料为地黄‘温85-5’,种植在河南省武陟县蔡庄村(35°2′51″N,113°18′34″E),经河南农业大学王丰青教授鉴定为Rehmannia glutinosa Libosch.。将浓度为100 μmol/L的SA水溶液均匀喷施在生长180 d处于膨大后期长势一致的地黄叶片上,以叶片完全湿润且无水滴落下为准。分别于处理后1、3和6 h进行取样,取样时选择位置相同的叶片。对照组喷施蒸馏水,与处理组同时取样。样品清洗干净后,将块根切成1 cm3左右的小块,叶片剪碎,55℃烘干后打粉,过3号药典筛。样品粉末存放于干净的8号自封袋中备用。
1.2 毛蕊花糖苷含量测定
对照品毛蕊花糖苷(批号MUST-18032725)购于成都曼斯特科技有限公司,纯度均 ≥ 98%。采用 Agilent1260高效液相色谱仪(美国安捷伦科技有限公司)进行检测。
色谱条件:采用的色谱柱型号为 Dikma Diamonsil C18(4.6 × 250 mm,5 μm),柱温30℃,流速1 min/mL。毛蕊花糖苷的流动相为乙腈−0.1%醋酸水(16 : 84),检测波长334 nm,进样量为20 μL。
供试样品溶液制备:精密称取地黄叶和块根样品粉末0.8 g,放入锥形瓶中,精密吸取50 mL甲醇加入锥形瓶中,称重,并在65℃加热回流提取1.5 h,放凉至室温称重,用甲醇补足失重后,摇匀过滤。于蒸发皿中精密吸取滤液20 mL进行毛蕊花糖苷分析,在电热恒温水浴锅上浓缩至近干,残渣用流动相溶解,转移至5 mL容量瓶中,用流动相稀释至刻度,摇晃均匀,用0.22 μm微孔的滤膜过滤,滤液装入2 mL的进样瓶待测。
含量计算:以本实验室建立的标准曲线Y = 30024X − 110.9来计算毛蕊花糖苷含量,Y为峰面积积分值,X为样品的质量浓度。
1.3 样品RNA提取及高通量测序
用TRIzol试剂提取样品的总RNA,用核酸测定仪检测RNA的浓度和质量。使用带有Oligo dT的磁珠富集具有polyA尾巴的mRNA,然后将RNA片段化,反转录后再合成cDNA第2链,形成双链cDNA。双链cDNA经过末端修复、3′末端加A、添加测序接头、多轮扩增、热变性成单链及单链环化等一系列步骤后,完成测序文库的制备。测序委托华大基因科技有限公司进行,测序平台为BGISEQ-500。
对测序得到的原始序列(Raw reads)进行质控处理,去除低质量、接头及污染序列,获取过滤后的测序序列(Clean reads)。使用Bowtie2将Clean reads比对到课题组前期获得的地黄叶和根的参考基因序列集[11],统计不同样品的片段序列比对率以及分布,之后再使用RSEM 计算基因的表达水平,表达量用FPKM表示。对比分析水杨酸喷施前后地黄块根中基因的表达水平,获取水杨酸喷施处理的特异响应基因,并对其进行GO注释和KEGG注释,根据注释结果进行功能分类和KEGG pathway分类,并使用R软件中的phyper函数进行富集分析,获得水杨酸喷施处理下地黄块根内的关键分子响应进程。
1.4 实时荧光定量(qRT-PCR)分析
用TaKaRa反转录试剂盒对RNA进行反转录,合成cDNA,反应体系包括1 μL oligo dT primer,1 μL dNTP Mixture,2 μg 模板RNA,加水补足体积到10 μL,65℃保温5 min后,冰上迅速冷却。再加0.5 μL的RNase抑制剂,1 μL PrimeScript Ⅱ RTase,4 μL 5 × PrimeScript Ⅱ Buffer,加水补足体积到20 μL。反应程序为42℃ 60 min,95℃ 5 min。以RgTIP41为内参基因,用实时荧光定量PCR检测基因表达水平。所用试剂盒为SYBR® Premix Ex Taq™ Ⅱ(Tli RNaseH Plus) (Takara,大连),使用仪器为Bio-Rad IQ5(上海伯乐公司)。定量反应体系为25 μL,包含2 μL 上述反转录cDNA产物,上、下游引物各1 μL,12.5 μL SYBR® Premix Ex Taq,8.5 μL ddH2O。反应程序为:95℃变性30 s;然后95℃ 5 s, 60℃ 30 s,40个循环。结束反应后获得不同样品的扩增循环数Ct,使用2-ΔΔCt法计算不同基因的相对表达量。
2. 结果与分析
2.1 SA处理对地黄毛蕊花糖苷含量的影响
对SA处理的地黄叶和块根中的毛蕊花糖苷含量进行测定,结果表明,SA能够显著提高毛蕊花糖苷的含量(图1)。在叶中, SA处理1 ~ 6 h后,毛蕊花糖苷含量分别提高了11.2% ~ 19.3%。块根中毛蕊花糖苷的提升幅度远高于叶片,分别较对照提高了0.9 ~ 1.4倍,处理 6 h后的毛蕊花糖苷含量最高,达0.5 mg/g,远超2015版《中国药典》规定的0.02%,说明地黄叶面喷施SA可显著提高叶和块根中毛蕊花糖苷的含量。
2.2 地黄块根RNA测序分析
利用Agilent 2100 Bioanalyzer和Fragment Analyzer分别对提取的各样品总RNA质量进行检测,结果显示,12个样品的总RNA浓度在430 ~ 1260 ng/μL,总RNA质量在8.6 ~ 25.2 μg,RNA的浓度和总量满足建库需求。RIN值在8.2 ~ 9.9,28S/18S > 1.6,说明RNA较为完整,符合建库要求。
为了分析SA处理后地黄块根相关基因的表达特性,对SA处理1、3和6 h后的地黄块根进行RNA-seq分析,结果表明(表1),每个测序样本获得的总原始读段量均为21.94 M,去除低质量、接头污染及未知碱基N含量过高的reads,获得的高质量reads在20.98 ~ 21.27 M,碱基数均在1.05 ~ 1.06 Gb,测序数据量基本一致。将每个样品的测序数据匹配地黄参考转录组,发现匹配率在85.04% ~ 87.70%,特异匹配率在47.35% ~ 51.31%,测序数据能够较好地反映细胞中基因表达的真实情况,说明测序质量良好,可以进行后续基因表达分析。
表 1 测序数据统计结果Table 1. Statistics of sequenced data样本
Sample总原始序列
Total raw reads / M总测序序列
Total clean reads / M总测序碱基数
Total clean bases / Gb测序序列比率
Clean read ratio / %总匹配率
Total mapped / %特异匹配率
Uniquely mapped / %Control_1 21.94 21.13 1.06 96.3 87.70 51.31 Control_2 21.94 21.07 1.05 96.04 86.92 51.18 Control_3 21.94 21.08 1.05 96.08 85.72 51.09 SA 1h_1 21.94 21.27 1.06 96.93 85.44 47.35 SA 1h_2 21.94 21.08 1.05 96.05 87.07 48.03 SA 1h_3 21.94 21.15 1.06 96.37 87.28 49.26 SA 3h_1 21.94 20.98 1.05 95.59 86.85 50.36 SA 3h_2 21.94 21.05 1.05 95.93 85.74 49.92 SA 3h_3 21.94 21.05 1.05 95.95 86.81 50.47 SA 6h_1 21.94 21.09 1.05 96.11 86.50 50.25 SA 6h_2 21.94 21.06 1.05 96.00 85.04 49.42 SA6h_3 21.94 21.03 1.05 95.86 86.68 49.97 2.3 SA处理前后差异表达基因分析及筛选
为了分析SA处理后块根中基因的表达特性,采用FPKM值比较基因丰富度的差异(图2)。使用以下标准对差异表达基因(DEGs)进行识别和筛选:校正P值 < 0.001且log2值 ≥ 2。分析SA处理不同时间后与对照样品中的差异表达基因(图2:A),发现SA处理1 h后834个基因上调,2017个基因下调;处理3 h后1587个基因上调,2726个基因下调;处理6 h后1602个基因上调,2063个基因下调。进一步分析SA处理后的3个时间点与CK相比的共同差异表达基因,发现共有603个基因是共同差异表达的(图2:B),其中上调表达和下调表达的基因数分别为195(图2:C)和366个(图2:D)。
图 2 SA处理后基因显著差异表达A:SA处理过程中上调和下调的基因数目; B ~ D:SA处理后不同时间点鉴别出的总DGEs(B)、上调DGEs(C)和下调DGEs的维恩图。Figure 2. Significant DEGs in response to SA treatmentA: Up-regulated and down-regulated gene numbers during SA treatment; B − D: Venn diagram of total DEGs (B), up-regulated DEGs (C), and down-regulated DEGs (D) identified at different time points after SA treatment.对603个DGEs进行GO功能分类(图3:A),结果显示其共分为分子功能(Molecular function)、细胞功能(Cellar function)和生物功能(Biological function)3个大类。其中分子功能分类中的催化活性(Catalytic activity)占比最多,其次是ATP结合;在细胞功能分类中,细胞(Cell)、细胞膜(Membrane)、细胞膜构件(Membrane part)较多;生物功能分类中,细胞过程(Cellular process)和代谢过程(Metabolic process)所占比重最多。进一步对603个DEGs进行KEGG代谢通路富集分析,图3:B展示了最显著的前20个代谢通路,这些通路涉及各项生命活动。其中首先被富集的是苯乙醇苷生物合成通路(Phenylpropanoid biosynthesis),其次是淀粉和蔗糖代谢合成通路(Starch and sucrose metabolism)、植物MARK信号通路(MAPK signaling pathway plant)及RNA聚合酶通路(RNA polymerase)。这说明SA喷施对地黄块根中次生代谢物的积累产生了较大影响,且调控了碳水化合物和MAPK等多个代谢通路。
图 3 SA处理后3种比对均差异表达基因的GO分类及KEGG通路富集A:603个基因的GO分类;B:KEGG富集的前20个代谢通路。圆点大小和颜色分别表示通路中DEGs的数量和Q值范围。1:分子转导活性;2:分子载体活性;3:信号转导活性;4:结构分子活性;5:转运活性;6:转录调节活性;7:抗氧化活性;8:结合;9:分子功能调节;10:催化活性;11:膜封闭腔;12:超分子复合物;13:共质体;14:细胞连接;15:细胞组分;16:细胞外区域;17:膜组分;18:膜;19:细胞器组分;20:细胞器;21:大分子复合物;22:细胞;23:生殖过程;24:繁殖;25:解毒作用;26:多细胞生物过程;27:发育过程;28:多生物体过程;29:信号;30:定域化;31:生物调节;32:对刺激的反应;33:代谢过程;34:细胞过程;35:细胞成分组织或生物合成。Figure 3. GO classification and KEGG pathway enrichment of co-DEGs in three comparisonsA: GO classification of 603 genes; B: Top 20 enriched KEGG pathways among 603 genes. Size and color of dot represent number and scope of DEGs in pathway, respectively. 1: Molecular transducer activity; 2: Molecular carrier activity; 3: Signal transducer activity; 4: Structural molecule activity; 5: Transporter activity; 6: Transcription regulator activity; 7: Antioxidant activity; 8: Binding; 9: Molecular function regulator; 10: Catalytic activity; 11: Membrane-enclosed lumen; 12: Supramolecular complex; 13: Symplast; 14: Cell junction; 15: Cell part; 16: Extracellular region; 17: Membrane part; 18: Membrane; 19: Organelle part; 20: Organelle; 21: Macromolecular complex; 22: Cell; 23: Reproductive process; 24: Reproduction; 25: Detoxification; 26: Multicellular organismal process; 27: Developmental process; 28: Multi-organism process; 29: Signaling; 30: Localization; 31: Biological regulation; 32: Response to stimulus; 33: Metabolic process; 34: Cellular process; 35: Cellular component organization or biogenesis.2.4 毛蕊花糖苷合成相关催化酶基因表达分析
研究表明,在植物体内,毛蕊花糖苷由苯丙氨酸途径的咖啡酰辅酶A(Caffeoyl CoA)和酪氨酸途径的羟基酪醇苷(Hydroxtrosol glucoside)经缩合糖苷化后生成[8]。在地黄转录组中鉴定出可能参与毛蕊花糖苷合成的编码催化酶的基因215个,但SA处理后,地黄块根中仅有少数催化酶基因上调表达(图4)。在酪氨酸途径中,编码乙醛脱氢酶(ALDH)的基因CL7331.Contig2,在SA处理1 h和3 h后的地黄块根中表达量显著升高,另一个ALDH编码基因Unigene9172在SA处理后的表达量也有一定程度上升。编码糖苷转移酶(UGT)的基因CL4677.Contig1随着SA处理时间的延长其表达量逐渐升高,在SA处理6 h后表达量最高。编码多酚氧化酶(PPO)的两个基因Unigene12832和Unigene12832在SA处理3 h和6 h后的表达量增加较为明显。而苯丙氨酸途径的催化酶基因表达变化不明显。这说明SA处理后毛蕊花糖苷含量的增加可能主要与酪氨酸途径部分催化酶基因的表达量增加有关。
2.5 差异表达转录因子筛选
对SA处理不同时间后地黄块根中差异表达的转录因子进行分析,结果表明(表2),25种转录因子的编码基因在处理前后呈差异表达。在处理1和3 h后,下调表达的转录因子较多,处理6 h后则上调表达的转录因子较多。WRKY、MYB、bHLH、AP2-EREBP、NAC和GRAS转录因子的差异表达基因较多,其中AP2-EREBP、WRKY和MYB的差异表达基因最多,且均表现为SA处理1 h后下调的基因较多, 3 h和6 h后上调表达的基因较多。进一步分析发现,共有20个转录因子编码基因在SA处理后的3个时间点均上调表达(表3),其中NAC和AP2-EREBP基因均为4个,WRKY基因有3个,MYB、GRAS、PLATZ基因各2个,bHLH、MADS和C2C2-CO-lik基因各1个。具有调控毛蕊花糖苷合成功能的RgWRKY37编码基因CL394.Contig2在SA处理1、3、6 h后的Log2(SA处理/CK)的值分别为0.79、0.82和0.57,Log2(SA处理/CK)的值虽然小于1,但其Q-value和P-value均达到了显著水平,说明在SA处理后CL394.Contig2上调表达。
表 2 SA处理后差异表达的转录因子数Table 2. Number of differentially expressed transcription factors (TFs) after SA treatment转录因子
Transcription factorCK-vs-1 h CK-vs-3 h CK-vs-6 h 共同差异表达的基因数
Number of common DEGs下调 Down 上调 Up 下调 Down 上调 Up 下调 Down 上调 Up zf-HD 2 1 1 1 0 0 0 WRKY 11 5 8 16 5 15 5 TUB 1 0 1 1 0 0 0 Trihelix 1 0 1 0 0 0 0 Tify 1 0 3 0 3 0 1 PLATZ 0 4 0 4 1 3 2 SRS 0 0 2 0 2 0 0 OFP 2 0 3 0 1 0 0 NAC 2 8 2 6 0 8 4 MYB 15 10 5 7 6 12 3 mTERF 1 0 2 0 1 1 0 MADS 2 2 3 4 2 2 1 LOB 1 0 4 2 2 0 0 HSF 5 2 4 6 3 6 2 GRAS 1 8 0 4 0 7 2 G2-like 2 0 2 1 0 3 0 CPP 2 0 2 0 4 0 2 C2H2 3 1 8 1 3 1 2 C2C2-GATA 2 0 1 0 5 0 0 C2C2-Dof 1 1 3 0 2 1 0 C2C2-CO-like 0 1 0 2 4 3 1 bZIP 1 2 0 0 1 0 0 bHLH 12 3 15 4 5 4 2 AP2-EREBP 15 12 12 18 9 21 6 ABI3VP1 5 2 7 1 1 1 0 总数 88 62 89 78 60 88 33 表 3 SA处理后上调表达的转录因子基因Table 3. Up-regulated transcription factor genes after SA treatment转录因子
Transcription factor基因
GeneLog2(SA/CK) 功能
Function1 h 3 h 6 h AP2-EREBP CL1637.Contig3 2.82 1.29 2.42 Ethylene-responsive transcription factor ERF071 AP2-EREBP CL4501.Contig2 1.66 1.75 2.16 Pathogenesis-related genes transcriptional activator PTI6 AP2-EREBP CL7827.Contig1 1.77 3.51 4.24 Ethylene-responsive transcription factor ERF106-like AP2-EREBP Unigene2558 1.62 1.06 1.74 Ethylene-responsive transcription factor 2-like MYB CL1983.Contig1 4.55 4.19 3.12 Transcription factor TFIIIB component B''-like MYB CL4303.Contig1 3.76 2.61 3.47 Single MYB histone protein NAC CL2945.Contig2 6.82 7.15 7.51 NAC domain-containing protein 82-like isoform X1 NAC CL4851.Contig1 3.15 1.99 2.44 NAC transcription factor 29 NAC CL4851.Contig2 3.15 2.27 2.82 NAC transcription factor 29 NAC Unigene5193 2.09 1.38 2.37 NAC domain-containing protein 72 C2C2-CO-like CL5505.Contig3 2.94 2.66 4.31 Zinc finger protein CONSTANS-LIKE 4-like PLATZ CL5569.Contig1 2.31 1.49 2.53 Interleukin-1 receptor-associated kinase 4 PLATZ CL5569.Contig3 2.47 1.71 2.38 Interleukin-1 receptor-associated kinase 4 GRAS CL645.Contig2 1.93 1.65 2.91 Scarecrow-like protein 14 GRAS Unigene10453 1.03 1.03 1.08 Scarecrow-like protein 15 WRKY CL6521.Contig1 2.84 1.66 2.35 Probable WRKY transcription factor 25 WRKY CL7324.Contig3 1.13 1.59 1.21 Probable WRKY transcription factor 35 WRKY CL791.Contig6 2.59 2.28 2.29 Probable WRKY transcription factor 40 bHLH Unigene12420 2.20 2.20 2.29 Phytochrome-interacting factor 3 MADS Unigene23315 2.17 3.01 2.27 MADS-box transcription factor 2.6 qRT-PCR验证基因表达差异
为了验证转录组测序对基因表达量分析的可靠性,随机选取CL7331.Contig2、Unigene1886、CL985.Contig1、CL5931.Contig2和CL379.Contig3等5个基因,利用qRT-PCR方法检测其在不同样本中的相对表达量。结果表明(图5),5个基因的定量结果与转录组获得的FPKM值变化趋势基本一致,其中CL7331.Contig2和CL5931.Contig2为SA处理后上调表达的基因,Unigene1886、CL985.Contig1和CL379.Contig3为SA处理后下调表达的基因。qRT-PCR与转录组测序的Pearson相关系数为0.602,相关性达显著水平,说明利用转录组测序分析SA处理后的基因表达量结果可靠。
图 5 差异表达基因的qRT-PCR验证A ~ E分别为CL7331.Contig2、Unigene1886、CL985.Contig1、CL5931.Contig2和CL379.Contig3的FPKM值与相对表达量;F:FPKM值与qRT-PCR的相关性分析。Figure 5. Validation of DEGs by qRT-PCRA–E: Represent expression and FPKM values of CL7331.Contig2, Unigene1886, CL985.Contig1, CL5931.Contig2, and CL379.Contig3; F: Correlation analysis between FPKM and qRT-PCR data.3. 讨论
植物次生代谢产物的积累既受自身遗传因素的控制,也受生长过程中生物与非生物环境条件的影响。一般而言,若药用植物的次生代谢产物在细胞中的含量相对较低,则会制约次生代谢产物的最终含量。近年来,人们常利用生物和非生物诱导子对植物进行处理,以提高植物特定次生代谢产物的生产[12]。如花生四烯酸(AA)、SA、茉莉酸甲酯(MeJA)和AgNO3均能够提高紫杉醇的含量[13]。50 µmol/L的乙烯利可以显著促进人参(Panax ginseng C. A. Meyer)根的生长和人参皂苷的积累[14]。诱导子提高苯乙醇苷含量的研究亦有报道,如外源添加Ag + 和腐胺均可以提高肉苁蓉(Cistanche deserticola Y. C. Ma)细胞培养物中松果菊苷和毛蕊花糖苷的含量[15]。本课题组前期研究发现,在地黄毛状根培养的培养基中添加25 μmol/L的SA可将毛蕊花糖苷的含量提高2.28倍[10]。本研究发现,叶面喷施100 μmol/L的SA可显著提高地黄叶片和块根中毛蕊花糖苷的含量,在块根中最高可提高1.4倍,说明在大田中叶面喷施诱导子可有效提高地黄块根中的次生代谢产物,有助于改善中药材的品质。
转录组测序分析不但可以高通量地获得基因表达的有关信息,还能够揭示基因表达与生命现象之间的内在联系,从而表征生命体的生理活动规律并确定其代谢特征[16]。目前,转录组测序不仅用于模式植物和大田作物生长发育及逆境胁迫响应关键基因的筛选[17-19],在药用植物次生代谢产物合成调控的结构基因和转录因子基因的挖掘中也有广泛应用[20-22]。由于地黄为同源四倍体物种,其基因组测序虽有报道[23],但作为参考基因组仍存在一些问题。因此,本研究利用课题组前期获得的地黄根、叶转录组为参考基因集进行分析,发现测序数据的特异匹配率偏低(50%左右),与地黄毛状根转录组测序的结果[10]类似,可能与其为同源四倍体物种有关。地黄叶片表面喷施SA后,上调表达的基因数少于下调表达,与SA处理的地黄毛状根结果[10]不同,这可能与本研究以大田地黄材料进行SA处理有关。本研究还发现,利用RNA-seq分析基因表达与qRT-PCR分析的结果相关系数仅为0.602,虽然达到显著相关,但未达到极显著相关水平,可能与地黄的基因组较大(约2.6 Gb),而采用RNA-seq测序获得的数据量较小有关。因此,对于基因组较大的物种,建议提高RNA-seq测序的深度,以获得更多的基因表达信息,提高基因表达量分析的准确性。
毛蕊花糖苷的生物合成途径目前已经比较清楚,其羟基酪醇基团来源于酪氨酸途径,咖啡酰基团来源于苯丙氨酸途径[24]。本课题组进一步推导、优化了毛蕊花糖苷的生物合成途径,认为毛蕊花糖苷是由羟基酪醇苷和咖啡酰辅酶A在莽草酸邻羟基肉桂酰转移酶(HCT)/毛蕊花糖苷合酶(AcS)和UGT的催化下合成[10]。周延清等[25] 基于地黄代谢组学分析获得了KEGG途径中的香豆酸-3-羟化酶(C3H),并克隆了其全长编码序列。李欣容等[26]根据SA处理下毛状根中催化酶基因的表达特性,鉴定并克隆了响应SA诱导的毛蕊花糖苷合酶基因RgAcS1。Yang等[27] 鉴定了4个酪氨酸脱羧酶(TyDC)基因,遗传转化发现过量表达RgTyDC2和RgTyDC4的地黄块根、纤维根、茎、嫩叶和成熟叶中的毛蕊花糖苷含量均显著高于野生型。Wang等[28]筛选了1个响应SA和H2O2诱导的WRKY转录因子基因RgWRKY37,功能研究发现RgWRKY37过量表达的毛状根转化体中毛蕊花糖苷和总苯乙醇苷的含量均显著高于对照。本研究发现,在SA处理的地黄块根中2个ALDH基因、1个UGT基因和2个PPO基因均上调表达,可能与块根中毛蕊花糖苷的含量增加有关。同时,在SA处理后的3个时间点,编码WKRY、NAC和AP2-EREBP等转录因子的20个基因均显著上调表达,其中RgWRKY37的表达量均明显增加。本研究结果为进一步探讨SA诱导毛蕊花糖苷合成的分子机理奠定了基础。
-
图 1 供试凋落物分解过程及混合分解非加和效应
A和B分别为6种凋落物的分解过程以及混合凋落物的实测和预测分解过程。F30、F20、F10和F5分别代表凋落物中落花占比为30%、20%、10%和5%,L100和F100分别代表纯凋落叶和落花,P代表混合分解的预测值。在相同分解时间下,不同字母表示凋落物间差异显著,*表示实测值和预测值间差异显著,P < 0.05。下同。
Figure 1. Decomposition of tested litter and non-additive effects of mixed decomposition
Subgraphs A and B represent decomposition progress of six types of litter and observed and predicted decomposition progress of mixed litter, respectively. F30, F20, F10, and F5 represent proportion of flowers in 30%, 20%, 10% and 5% mixed litter, respectively. L100 and F100 represent pure leaf litter or flower, respectively, while P represents predicted values in mixed litter decomposition. At the same point-in-time, different letters indicate significant differences, while * indicates significant differences between observed and predicted values, P < 0.05. Same below.
图 2 供试凋落物的养分释放过程及混合分解非加和效应
A ~ C分别为6种凋落物的碳、氮和磷的释放过程;D ~ F分别为混合凋落物碳、氮和磷的实测和预测释放过程。相同分解时间下,A ~ C中不同字母表示凋落物间差异显著,P < 0.05。D ~ F中,*和***分别表示实测值和预测值在P < 0.05和P < 0.001水平上差异显著。
Figure 2. Nutrient release of tested litter and non-additive effects of mixed decomposition
A – C represent C, N, and P release progress in six types of litter; D – F represent observed and predicted C, N, and P release progress in mixed litter. At the same point-in-time, different letters in the same column in A – C indicate significant differences, P < 0.05, while *and *** in D – F indicate significant differences between observed and predicted values at P < 0.05 and P < 0.001 level, respectively.
表 1 供试凋落物的基质质量
Table 1 Substrate quality of tested litter
凋落物
Litter碳含量
C content
/ mg/g氮含量
N content
/ mg/g磷含量
P content
/ mg/g碳氮比
C/N碳磷比
C/P氮磷比
N/P落花 546.85 ± 32.69** 71.46 ± 1.87** 2.80 ± 0.16** 7.65 ± 0.30** 195.54 ± 0.78 25.60 ± 1.00** 凋落叶 451.87 ± 22.12 22.46 ± 1.00 1.67 ± 0.25 20.12 ± 0.43 277.34 ± 29.21 13.76 ± 2.78 Note: **, P < 0.01. 表 2 基于模型预测的凋落物分解速率及混合分解非加和效应
Table 2 Olson model-based predication of litter decomposition rate and non-additive effects of mixed decomposition
凋落物类型
Litter type分解速率k
Decomposition rate / a−1分解速率预测值kP
Predicted decomposition rate / a−1非加和效应值Δ
Value of non-additive effects / %30%落花 3.48 ± 0.04b 3.58 ± 0.03 −2.75NS 20%落花 3.05 ± 0.12b 3.16 ± 0.03 −3.56NS 10%落花 2.71 ± 0.05c 2.74 ± 0.02 −1.20NS 5%落花 2.48 ± 0.07cd 2.54 ± 0.01 −2.34NS 凋落叶 2.33 ± 0.01d − − 落花 6.50 ± 0.10a − − 注:同列数字后不同小写字母表示凋落物间差异显著,P < 0.05;NS:不显著。 Notes: Different lowercase letters in the same column indicate significant differences, P < 0.05; NS: Non-significant. 表 3 不同凋落物质量残留率的重复测量方差分析
Table 3 Repeated measures ANOVA of residual mass of different litter during decomposition
变异来源Source of variation F值 F value P值 P value 凋落物类型 (L) 839.147 < 0.001 分解时间 (T) 144.444 < 0.001 L × T 3.711 0.001 表 4 不同凋落物养分残留率的重复测量方差分析
Table 4 Repeated measures ANOVA of nutrients remaining in different litter during decomposition
变异来源
Source of variationC残留率
C remaining rateN残留率
N remaining rateP残留率
P remaining rateF值
F valueP值
P valueF值
F valueP值
P valueF值
F valueP值
P value凋落物类型 (L) 92.507 < 0.001 211.552 < 0.001 34.024 < 0.001 分解时间 (T) 16.846 < 0.001 14.685 < 0.001 15.933 < 0.001 L × T 1.258 0.283 1.551 0.150 5.875 < 0.001 表 5 混合凋落物元素释放非加和效应值与落花比例的回归关系
Table 5 Regression relationship between values of non-additive effects on nutrient release of litter mixtures and proportion of fallen flowers
养分 Nutrients 回归方程
Regression equation决定系数
Determinate coefficient R2F值
F valueP值
P value碳 Δ = −52.28 PF + 6.12 0.08 6.34 0.015 氮 Δ = −97.13 PF − 3.22 0.39 38.55 < 0.001 磷 Δ = 2817.76 PF 2 − 1019.84 PF + 74.07 0.19 7.88 < 0.001 注:Δ为养分残留率较其预测值的提高率,PF为落花在凋落物中所占比例。 Notes: Δ represents increment of nutrients remaining relative to corresponding predicted value, while PF represents proportion of fallen flowers in litter mixture. -
[1] 杨关吕,黎建强,左嫚,孙轲,胡景. 滇中高原磨盘山云南松林凋落物输入动态及养分归还量研究[J]. 生态环境学报,2019,28(11):2158−2164. doi: 10.16258/j.cnki.1674-5906.2019.11.003 Yang GL,Li JQ,Zuo M,Sun K,Hu J. Litter Production variation and nutrient return of Pinus yunnanensis forest in Mopan mountain in Central Yunnan Plateau[J]. Ecology and Environmental Sciences,2019,28 (11):2158−2164. doi: 10.16258/j.cnki.1674-5906.2019.11.003
[2] Kou L,Jiang L,Hättenschwiler S,Zhang MM,Niu SL,Fu XL,et al. Diversity-decomposition relationships in forests worldwide[J]. eLife,2020,9:e55813. doi: 10.7554/eLife.55813
[3] Liu J,Liu XY,Song QN,Compson ZG,LeRoy CJ,et al. Synergistic effects:A common theme in mixed-species litter decomposition[J]. New Phytol,2020,227 (3):757−765. doi: 10.1111/nph.16556
[4] Porre RJ,van der Werf W,de Deyn GB,Stomph TJ,Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis[J]. Soil Biol Biochem,2020,145:107791. doi: 10.1016/j.soilbio.2020.107791
[5] Zeng LX,He W,Teng MJ,Luo X,Yan ZG,et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the three gorges reservoir,China[J]. Sci Total Environ,2018,639:679−686. doi: 10.1016/j.scitotenv.2018.05.208
[6] 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报,2019,43(8):648−657. doi: 10.17521/cjpe.2019.0097 Jia BR. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology,2019,43 (8):648−657. doi: 10.17521/cjpe.2019.0097
[7] Wang WB,Chen DS,Zhang Q,Sun XM,Zhang SG. Effects of mixed coniferous and broad-leaved litter on bacterial and fungal nitrogen metabolism pathway during litter decomposition[J]. Plant Soil,2020,451 (1):307−323.
[8] Wang WB,Zhang Q,Sun XM,Chen DS,Insam H,et al. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition[J]. Soil Biol Biochem,2020,141:107690. doi: 10.1016/j.soilbio.2019.107690
[9] 袁亚玲,张丹桔,张艳,李勋,陈亚梅,等. 马尾松与阔叶树种凋落叶混合分解初期的酶活性[J]. 应用与环境生物学报,2018,24(3):508−517. doi: 10.19675/j.cnki.1006-687x.2017.08042 Yuan YL,Zhang DJ,Zhang Y,Li X,Chen YM,et al. Enzyme activities in the early stage of mixed leaf litter decomposition from Pinus massoniana and broad-leaved tree species[J]. Chinese Journal of Applied and Environmental Biology,2018,24 (3):508−517. doi: 10.19675/j.cnki.1006-687x.2017.08042
[10] Hou SL,Lü XT. Mixing effects of litter decomposition at plant organ and species levels in a temperate grassland[J]. Plant Soil,2021,459 (1):387−396.
[11] 马勇,范晓慧,刘增文,朱凡,林媛媛. 北方城市12种常见树木落花分解及其养分释放特征[J]. 生态学报,2021,41(1):48−56. Ma Y,Fan XH,Liu ZW,Zhu F,Lin YY. Decomposition and nutrient release characteristics of falling flowers of 12 common tree species in northern cities[J]. Acta Ecologica Sinica,2021,41 (1):48−56.
[12] 吴迪,韩振诚,李苇洁,田奥,王加国. 马缨杜鹃不同花叶比例凋落物的分解程度和持水性能研究[J]. 水土保持学报,2020,34(5):186−191. doi: 10.13870/j.cnki.stbcxb.2020.05.026 Wu D,Han ZC,Li WJ,Tian A,Wang JG. Study on the decomposition and water holding capacity of flower and leaf litter mixtures of Rhododendron delavayi[J]. Journal of Soil and Water Conservation,2020,34 (5):186−191. doi: 10.13870/j.cnki.stbcxb.2020.05.026
[13] Otsing E,Barantal S,Anslan S,Koricheva J,Tedersoo L. Litter species richness and composition effects on fungal richness and community structure in decomposing foliar and root litter[J]. Soil Biol Biochem,2018,125:328−339. doi: 10.1016/j.soilbio.2018.08.006
[14] 田奥,王加国,韩振诚,吴佳伟,李苇洁. 百里杜鹃林区马缨杜鹃凋落物花叶混合比例对分解的影响[J]. 林业科学,2020,56(8):1−10. doi: 10.11707/j.1001-7488.20200801 Tian A,Wang JG,Han ZC,Wu JW,Li WJ. Impacts on decomposition of flower to leaf ration in the litter of Rhododendron delavayi in baili azalea forest area of Guizhou Province[J]. Scientia Silvae Sinicae,2020,56 (8):1−10. doi: 10.11707/j.1001-7488.20200801
[15] 刘璐,赵常明,葛结林,徐文婷,熊高明,等. 2009-2016年亚热带典型常绿落叶阔叶混交林凋落物回收量及现存量动态数据集[J]. 中国科学数据,2020,5(2):73−78. Liu L,Zhao CM,Ge JL,Xu WT,Xiong GM,et al. A dataset of litter recovery amount and standing crop dynamics in a typical subtropical mixed evergreen and deciduous broadleaved forest (2009-2016)[J]. China Scientific Data,2020,5 (2):73−78.
[16] Chae HM,Choi SH,Lee SH,Cha S,Yang KC,Shim JK. Effect of litter quality on needle decomposition for four pine species in Korea[J]. Forests,2019,10 (5):371. doi: 10.3390/f10050371
[17] Zhou WX,Zhang SR,Wang LJ,Hui HY,Zhang XX. Applicability of the microbial inoculation method in the study on litter decomposition[J]. Taiwania,2021,66 (3):364−373.
[18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 263−270. [19] Shen X,Chen YM,Wang LF,Guo L,Zheng HF,et al. Mixture of plant functional groups inhibits the release of multiple metallic elements during litter decomposition in alpine timberline ecotone[J]. Sci Total Environ,2020,747:141298. doi: 10.1016/j.scitotenv.2020.141298
[20] Liu CC,Liu YG,Guo K,Zhao HW,Qiao XG,et al. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China[J]. Soil Biol Biochem,2016,101:44−54. doi: 10.1016/j.soilbio.2016.07.004
[21] 张晓曦,周雯星,李佳佳,王博雅,刘增文,等. 早期分解中油松与阔叶树种凋落叶混合分解效应及其相互影响[J]. 植物科学学报,2019,37(3):303−311. doi: 10.11913/PSJ.2095-0837.2019.30303 Zhang XX,Zhou WX,Li JJ,Wang BY,Liu ZW,et al. Mixed decomposition and interspecific effects during early decomposition of litter mixtures of Pinus tabuliformis Carrière and broadleaved species[J]. Plant Science Journal,2019,37 (3):303−311. doi: 10.11913/PSJ.2095-0837.2019.30303
[22] Chomel M,Guittonny-Larchevêque M,Fernandez C,Gallet C,DesRochers A,et al. Plant secondary metabolites:a key driver of litter decomposition and soil nutrient cycling[J]. J Ecol,2016,104 (6):1527−1541. doi: 10.1111/1365-2745.12644
[23] Zhang L,Zhang YJ,Zou JW,Siemann E. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures:an antagonistic non-additive effect[J]. Sci Rep,2014,4 (1):5488. doi: 10.1038/srep05488
[24] 黎舒,郑巧巧,汪凤林,陈潇潇,兰思仁,曹光球. 银杏浸提液对桃金娘叶绿素荧光和土壤酶活性的影响[J]. 西北林学院学报,2018,33(5):23−30. Li S,Zheng QQ,Wang FL,Chen XX,Lan SR,Cao GQ. Effects of Ginkgo biloba extract on chlorophyll fluorescence and soil enzyme activity of Rhodomyrtus tomentosa[J]. Journal of Northwest Forestry University,2018,33 (5):23−30.
[25] Zhang XX,Liu H,Zhou WX,Li JJ,Lei HY,et al. The effects of plant secondary metabolites from coniferous needle leaf litter on the leaf litter decomposition of Betula albo-sinensis burk[J]. Sains Malays,2019,48 (3):561−570. doi: 10.17576/jsm-2019-4803-08
[26] 李贺勤,刘奇志,张林林,王玉玲,张航,等. 草莓连作土壤酚酸类物质积累对土壤线虫的影响[J]. 生态学杂志,2014,33(1):169−175. doi: 10.13292/j.1000-4890.20131220.0023 Li HQ,Liu QZ,Zhang LL,Wang YL,Zhang H,et al. Accumulation of phenolic acids in the monocultured strawberry soils and their effect on soil nematodes[J]. Chinese Journal of Ecology,2014,33 (1):169−175. doi: 10.13292/j.1000-4890.20131220.0023
[27] Adamczyk B,Karonen M,Adamczyk S,Engström MT,Laakso T,et al. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest[J]. Soil Biol Biochem,2017,107:60−67. doi: 10.1016/j.soilbio.2016.12.027
[28] Kong CH,Wang P,Zhao H,Xu XH,Zhu YD. Impact of allelochemical exuded from allelopathic rice on soil microbial community[J]. Soil Biol Biochem,2008,40 (7):1862−1869. doi: 10.1016/j.soilbio.2008.03.009
[29] 李倩,袁玲,罗世琼,黄建国. 野生黄花蒿植株和土壤中的青蒿素、黄酮含量变化及其对土壤微生物的影响[J]. 草业学报,2015,24(11):29−37. doi: 10.11686/cyxb2014510 Li Q,Yuan L,Luo SQ,Huang JG. Artemisinin and flavonoids in wild Artemisia annua and surrounding soil and the influence on soil microbes[J]. Acta Prataculturae Sinica,2015,24 (11):29−37. doi: 10.11686/cyxb2014510
[30] Adamczyk S,Adamczyk B,Kitunen V,Smolander A. Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil[J]. Soil Biol Biochem,2015,87:59−66. doi: 10.1016/j.soilbio.2015.04.006
[31] Chapman SK,Newman GS. Biodiversity at the plant-soil interface:microbial abundance and community structure respond to litter mixing[J]. Oecologia,2010,162 (3):763−769. doi: 10.1007/s00442-009-1498-3
[32] Santonja M,Rancon A,Fromin N,Baldy V,Hättenschwiler S,et al. Plant litter diversity increases microbial abundance,fungal diversity,and carbon and nitrogen cycling in a mediterranean shrubland[J]. Soil Biol Biochem,2017,111:124−134. doi: 10.1016/j.soilbio.2017.04.006
[33] Song YY,Song CC,Ren JS,Zhang XH,Jiang L. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang Plain,northeast China[J]. Wetlands,2019,39 (3):549−557. doi: 10.1007/s13157-018-1102-x
-
期刊类型引用(0)
其他类型引用(1)